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ABSTRACT 

Storage and transfer of cryogenic liquefied gases on volume scales from under 10 liters for 

lab use, up to hundreds of millions of liters for industrial applications is of paramount importance 

across a vast range of industries.  Traditionally, these commodities have been stored at or near the 

normal boiling point due to relative ease of operation and safety-related considerations; however, 

this also means that some percentage will always be lost due to environmental heat leaking into 

the vessel and causing boiloff.  These losses become more concerning as scales increase, and are 

of particular importance for high-cost commodities such helium and hydrogen.  Additionally, the 

normal boiling point has typically marked the highest liquid density achievable, which became a 

strong driver of end-use system designs such as space launch vehicles.  Recent development and 

testing of an Integrated Refrigeration and Storage (IRAS) system for liquid hydrogen has proven 

that next generation cryogenic storage operations such as zero boiloff and densification are feasible 

on a large scale.  This IRAS system married an 850 Watt at 20 Kelvin reverse-Brayton cycle 

commercial cryogenic refrigerator with a 125,000 liter LH2 storage tank via an internal tubular 

heat exchanger; thereby allowing heat to be removed directly from the hydrogen, and by extension, 

providing a means to control the bulk thermodynamic state.  Tests of zero boiloff, in-situ 

liquefaction, and densification down to the triple point were performed, and data including fluid 

temperature profiles and tank pressure were gathered.  Details regarding the design, setup, and 

testing of the IRAS system are discussed herein, and the data are used to anchor various physics 

models created to predict the behavior of the system during both transient and steady state 

operations.  Hopefully these efforts will provide a useful basis for the design and implementation 

of future large scale IRAS systems across numerous industries.   
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ṁGHe   Mass flow rate of helium, kg/s 

mliq   Mass of stored liquid, kg 

Pexp   Pressure of helium at expander inlet, kPa 

PGHe,supply  Pressure of helium at refrigerator outlet (i.e. tank supply), kPa(a) 

Pliq   Pressure of stored liquid, kPa(a) 

Ptank   Tank pressure (saturated), kPa(a) 

Pvap   Vapor pressure of stored fluid, kPa(a) 

Q̇axial,port  Axial heat transfer through man-way port, W 

Q̇heater   Heat input from in-line heater, W 

Q̇HL,liq   Tank heat leak in liquid region, W 

Q̇HL,total  Total tank heat leak, W 

Q̇HL,vap  Tank heat leak in vapor region, W 

Q̇Lift   IRAS heat exchanger heat removal, W 

Q̇manway  Total heat transfer through the man-way assembly, W 

Q̇MLI   Heat transfer through the man-way port MLI, W 

Q̇MLI,broad  Heat transfer through the tank MLI, W 

Q̇pads   Heat transfer through the tank support pads, W 

Q̇plug   Heat transfer through the man-way plug, W 

Q̇port   Heat transfer through the man-way port, W 

Q̇SL   Heat transfer through the saturated liquid layer, W 

Q̇VJ,return  Heat load on the vacuum-jacketed helium return line, W 



xiv 
 

Q̇VJ,supply  Heat load on the vacuum-jacketed helium supply line, W 

Texp   Temperature of helium at expander inlet, K 

TGHe,return  Temperature of helium at refrigerator inlet (i.e. tank return), K 

TGHe,supply  Temperature of helium at refrigerator outlet (i.e. tank supply), K 

THX,in   Temperature of helium at IRAS heat exchanger inlet, K 

THX,out   Temperature of helium at IRAS heat exchanger outlet, K 

Tliq   Temperature of stored liquid, K 

Tmean   Average helium temperature across the vacuum-jacketed supply line, K 

Ttank   Tank temperature (saturated), K 

Tvap   Vapor temperature of stored fluid, kPa(a) 

t   Time, seconds 

tG10   Thickness of G-10 support block, m 

tMLI   Thickness of man-way port MLI, m 

tshell   Thickness of man-way port shell, m 

V�piston   Virtual piston volume of expander, m3 
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CHAPTER ONE: INTRODUCTION 

Overview on Cryogenic Storage & Transport 

Industrial gasses such as helium, hydrogen, argon, nitrogen and oxygen play a crucial role 

in virtually every industry on Earth.  They are used in innumerable applications; everything from 

welding and fabrication to semiconductor production, and from surgery to space travel—it is not 

a stretch to assert that the extraction, transport, and storage of such commodities has played a 

pivotal role in the technological advancement of the human race. 

In most applications the end use process requires the molecule/atom rather than the bulk 

phase product.  In other words, the method of storing the required commodity, be it in liquid form 

or as a high pressure gas, is usually irrelevant to the ultimate goal.  For example, from a chemistry 

standpoint, the Space Shuttle main engines did not explicitly require liquid hydrogen (LH2)  and 

liquid oxygen (LOX) to operate, only certain mass flow rates of both elements (although clever 

engineering exploited the cold power stored by the liquid to cool the engines also, which resulted 

in a convenient synergy).  Storage in liquid form simply provided a means by which the necessary 

amount of mass (energy)—103,000 kg of hydrogen and 520,000 kg of oxygen in this case—could 

be reasonably contained onboard the vehicle in order to make it to orbit.  Without the large density 

increase from gas to liquid (865:1 for hydrogen and 877:1 for oxygen) vehicle flight tanks would 

need to be unrealistically large and heavy, making human space travel impossible by chemical-

based propulsion.   

This situation is also true for the energy industry, where the decision to store and transport 

commodities in liquid form was primarily born out of logistical and economic realities.  The energy 

industry ships and stores vast quantities of liquefied natural gas (LNG) throughout the world 
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because the benefit of condensing large amounts of mass/energy in such a small volume (around 

600:1 for natural gas) outweighs the increased complexity and costs; even though virtually all 

LNG is ultimately gasified and burned in gas turbines used for power production.  

Thermodynamically this overall process is inefficient.  However, the economics bear out, and the 

adopted transport method of industrial gasses is in liquid form, either over the road in tanker trucks, 

or over the ocean in tanker ships. 

Complicating matters, is the fact that most gaseous commodities cannot be liquefied at 

ambient conditions—they possess a critical temperature above which liquefaction is impossible, 

and that usually lies well below Earth average (~293 K).  Such commodities are commonly referred 

to as cryogenic liquids, and their liquefaction temperatures range from ~4 K to ~120 K.  Due to 

the extremely low temperatures involved, storage and transport methods must take into account 

not only pressure containment, but also high performance thermal insulation systems to deal with 

the potential for extreme heat transfer between the liquid and ambient environment.  This fact, 

above all others, has shaped the design of cryogenic liquid systems since the first “permanent gas” 

(oxygen) was liquefied by Louis Paul Cailletet and Raoul Pictet in 1877 [1]. 

Bulk storage of cryogenic liquids such as nitrogen (LN2), hydrogen and natural gas has 

become routine on volume scales ranging from a few liters, used in laboratories and hospitals for 

example, to hundreds of millions of liters in the case of large LNG facilities [2].  Storage conditions 

are typically held close to the normal boiling point (NBP) (i.e. saturated at atmospheric pressure) 

in order to keep the vessel in a minimum-stress state, and/or maintain the low liquid temperature 

and high density.  Table 1 presents some relevant properties and costs of typical cryogenic liquids 

at NBP.   
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Table 1: Select Properties & Costs of Common Cryogenic Liquids 

NBP Crtical 
Temperature Density Heat of 

Vaporization Costǂ

K K kg/L kJ/kg $/L
Methane (LNG) 111.7 190.6 0.42 510.8 ~0.39

Oxygen 90.2 154.6 1.14 213.1 ~0.15

Argon 87.3 150.7 1.40 161.1 ~1.4

Nitrogen 77.4 126.2 0.81 199.2 ~0.08

Hydrogen‡ 20.4 33.1 0.07 448.7 ~0.5

Helium 4.2 5.2 0.12 20.8 ~15

Fluid†

 
† All fluid properties referenced from NIST Refprop Version 8. 
‡ Properties of “normal” hydrogen. 
ǂ Prices vary temporally, by location, and by quantity.  Reported values were determined from various 
sources, and may not reflect current market values 
 
 
Because the liquid is stored in a saturated state, any heat transferred into the tank from the 

environment contributes to liquid loss governed by the heat of vaporization.  If the storage times 

are long, the build-up of vapor must eventually be vented so as not to exceed the pressure rating 

of the vessel.  Heat leak can be minimized by elaborate and sophisticated vessel designs and 

thermal insulation systems such as vacuum-jacketing plus insulation materials, but can never be 

completely eliminated; therefore, all users of traditional cryogenic liquid storage tanks must accept 

some percentage of product loss over time.  Historically this loss has been quantified by a term 

called the normal evaporation rate (NER), and is used as a performance metric when evaluating 

storage vessels.  Due to the importance of the current point it needs to be reiterated that the NER 

cannot be circumvented using traditional passive methods (i.e. insulation); physics effectively 

forbids it.  The only means to eliminate losses due to unavoidable heat intrusion is to remove it via 

active refrigeration—therein lies one of the prime motivations for the work presented here. 
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Cryogenic Storage at NASA KSC 

In the 1960s, the National Aeronautics and Space Administration (NASA) accelerated the 

development of large scale cryogenic liquid storage technologies in support of the Apollo moon 

missions—the Saturn V vehicle required roughly 1.74M liters of LOX and 1.25M liters of LH2 

on-board at lift-off [3].  Accounting for the normal evaporation rate and other losses, potential 

launch scrubs/turn-around’s, and including margin, NASA engineers commissioned the 

construction of similarly sized storage spheres for both LOX and LH2 at Launch Complex 39 

(LC39) at Kennedy Space Center (KSC), of roughly double the required on-board volumes (3.41M 

liters for LH2 and 3.22M liters for LOX).  Similar in construction, the only substantial difference 

between the two tanks is the thermal insulation system.  Both employ expanded perlite powder 

bulk-fill insulation to help reduce environmental heat leak, however, the LH2 vessel is vacuum-

jacketed, while the LOX sphere is only double-walled and purged with gaseous nitrogen (GN2) to 

prevent moisture ingress.  Each was designed and certified to store normal boiling point liquid 

only; meaning that the lowest allowable temperatures and pressures were the NBP of their 

respective fluids, and atmospheric pressure.  Other important design factors are the vacuum 

loading on the outer vessel of the LH2 tank, which puts practical limits on how large the tank can 

be; and the stress on the inner LOX tank due to the weight of the liquid (roughly 16 times that of 

LH2).  During transfer operations the LH2 vessel was pressurized to approximately 455 kPa(g), 

and the liquid was pressure-fed to the vehicle; conversely, the liquid oxygen was pump-fed, which 

required a tank backpressure of approximately 82.7 kPa(g).  Figure 1 shows both spheres during 

the Space Shuttle program (1981-2011), although little had changed since their commissioning. 
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Photos: NASA 

Figure 1: LH2 and LOX Storage Spheres at LC39 at NASA KSC 

NASA was one of the largest consumers of LH2 during Apollo, and that trend continued 

throughout the 30 year duration of the Space Shuttle program.  Post-Shuttle analysis revealed that 

NASA lost approximately 12% of the total liquid hydrogen purchased due to NER, and 28% of 

liquid oxygen; and accounting for all losses, only about half of the total LH2 purchased was 

actually flown, and 32% of the LOX [4].  These commodity losses directly translated to economic 

losses, but also had many negative latent effects due to the continuous venting of hazardous 

(flammable) material, and the need to replenish the storage vessels from mobile tankers, 

considered a hazardous operation that required specially trained and qualified personnel, and was 

subject to unpredictable weather conditions. 

Following the retirement of the Space Shuttle, NASA began development of another heavy 

lift launch vehicle deemed the Space Launch System (SLS).  As with the Shuttle, SLS is designed 

to be a LOX/LH2 powered vehicle; however, because of the substantial size difference SLS will 

require roughly 46% more propellant on-board [5].  This increase puts a strain on the LC-39 
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storage systems, in particular the hydrogen side.  Analysis by the Ground Systems Development 

and Operations (GSDO) program at KSC, who are responsible for the SLS ground systems, 

revealed that the existing LH2 storage capacity supported too few launch attempts—in the case of 

a scrubbed launch, which is a frequent occurrence, it was possible that there would not be enough 

LH2 remaining to support another attempt in 24 hours.  This realization prompted GSDO to explore 

numerous solutions, and ultimately resulted in the decision to build an entirely new storage sphere 

at LC-39B.  This new LH2 sphere is slated to be placed in close proximity to the existing one, and 

will be roughly 47% larger by volume, with a usable liquid capacity of 4.73M liters [6]. 

Because building a new tank is a substantial undertaking, both in terms of time and cost, 

and because any investment in Pad infrastructure must also consider long term usage—the 1960s 

era tanks ended up supporting programs for 50 years—GSDO solicited ideas for advanced 

technologies to possibly be infused into the design.  Fully aware of the historical findings discussed 

above, GSDO was very interested in any technologies related to reducing/recouping propellant 

losses.  Two ideas made the cut and were incorporated into the design as bid options: advanced 

bulk-fill thermal insulation system using glass bubbles instead of expanded perlite, and a newly 

developed NASA technology referred to as Integrated Refrigeration and Storage (IRAS). 

Integrated Refrigeration and Storage 

Following the retirement of the Space Shuttle, and prompted in part by the historical 

findings reported above, NASA decided to invest in next generation cryogenic storage 

technologies.  A competitive research solicitation was announced in 2011 by the newly formed 

Advanced Exploration Systems (AES) Program from NASA Headquarters, and research engineers 
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at KSC responded with a proposal to demonstrate Integrated Refrigeration and Storage (IRAS)—

coupling a storage tank with a remotely located cryogenic refrigerator via an internal heat 

exchanger distributed throughout the bulk fluid volume—on a scale relevant to those required at 

space launch sites.  The proposal was selected for award by AES, and in 2012 work began on the 

Ground Operations Demonstration Unit for Liquid Hydrogen (GODU-LH2), a large scale IRAS 

test using LH2 at Kennedy Space Center.   

IRAS technology affords five unique capabilities, and were the primary test objectives of 

the GODU-LH2 campaign:  

1. Zero-loss cooldown of a large cryogenic tank from ambient temperature: Via the internal 

heat exchanger the refrigerator can be used for initial cooling of the entire tank mass 

without losing commodity, as opposed to the traditional method of unloading liquid 

product into the warm tank and boiling most away until the tank cools. 

2. Zero-loss tanker off-loading of liquid product: Depending on the commodity, cryogenic 

liquid tanker trucks are not allowed to vent while in transit, so the product they contain is 

usually saturated at a higher pressure (and temperature) when they arrive at their 

destination, requiring venting prior to off-load.  This product loss can be recuperated by 

the IRAS system by simply allowing the storage tank to accept the higher temperature 

product, and subsequently decreasing the pressure by removing heat with the refrigerator 

after the off-loading process is complete. 

3. Zero Boiloff (ZBO): By balancing the refrigerator lift (i.e. the cooling power) with the 

NER, in either a steady state manner or cyclically, an IRAS system can prevent boiloff and 

maintain liquid level indefinitely.  This integrated refrigeration eliminates the need to vent, 
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as well as associated product loss.  Constant tank pressure control can also be achieved 

depending on operational mode. 

4. In-Situ Liquefaction: If gaseous product is introduced into the storage tank, the IRAS 

system can liquefy it to fill the vessel, eliminating or reducing the dependency on tanker 

trucks to fill the vessel. 

5. Densification: If the refrigerator lift is greater than the storage tank heat leak, the liquid can 

be cooled below its normal boiling point, becoming denser in the process. 

Capabilities one through four have obvious economic ramifications, either by directly eliminating 

product loss, or by providing logistical/operational flexibility.  Number five however, is considered 

to be more of an advanced technological capability; one that can have broad reaching effects on 

both the launch vehicle as well as the launch pad architecture and operations [7]. 

Remote placement of the refrigeration system away from the storage tank makes the design 

of IRAS systems extremely flexible and scalable.  It does however, require that a “direct-flow” 

type refrigeration cycle be employed, such as reverse Brayton, to provide a continuous flow of 

refrigerant to the internal heat exchanger.  Conveniently, Brayton units are commercially available 

in a wide range of capacities.  Most of these machines use gaseous helium (GHe) as the working 

fluid (i.e. the refrigerant)—which is necessary for IRAS systems used to store liquid helium, and 

satisfactory for storing liquid hydrogen, but at storage temperatures above roughly 65 K it may be 

beneficial to entertain a vapor compression cycle using a working fluid with a higher boiling point 

such as nitrogen or methane. 

Regardless of refrigerant or cycle, the core innovation of IRAS is the ability to control the 

bulk fluid properties inside the tank via direct addition and removal of thermal energy (heat), as 
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opposed to venting/pressurizing.  By directly coupling the cold heat exchanger with the liquid, 

thermal resistance is minimized.  This contributes to faster overall system response and greater 

control over the state of the stored product.  In fact, in a properly designed IRAS system the entire 

bulk volume of stored liquid can be conditioned anywhere along its respective saturation curve, 

from the triple point to the maximum allowable pressure rating of the vessel—a fact proven by 

GODU-LH2 testing, and impossible without the use of active refrigeration.  Figure 2 shows a 

simple graphic comparing a traditional cryogenic liquid storage tank with an equivalent volume 

IRAS system. 

 
Figure 2: Simplified Comparison of a Traditional Storage Tank and an IRAS System 
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structural failure if the tank is not vented to atmosphere.  Also resulting from the pressure rise, the 

liquid temperature will increase and density decrease; both are typically unfavorable to the end-

use process for which liquid is being stored in the first place. 

In the case of an IRAS tank the refrigeration system must be sized to remove at least as 

much heat as is entering from the environment or else the pressure will climb similar to a traditional 

tank.  Provided the lift-to-heat leak ratio is ≥1 the vent can remain closed at all times while the 

refrigerator is operating, ensuring no mass is lost to the ambient environment.  Pressure is 

controlled using refrigerator lift alone by varying the mass flow rate and/or temperature of the 

refrigerant passing though the internal heat exchanger.  If the lift matches the heat leak, the pressure 

and liquid properties will remain stable; this process is referred to as the pressure control ZBO 

operating mode (ZBO-PC).  ZBO can also be achieved by cycling the refrigerator on and off, 

allowing the tank to pressurize and de-pressurize within an allowable range, or by setting a constant 

refrigerant inlet temperature and allowing the tank to reach equilibrium.  The former is referred to 

as duty cycle ZBO (ZBO-DC) and is the most efficient from an electrical power consumption 

standpoint, but can be hard on mechanical equipment.  The latter is temperature control ZBO 

(ZBO-TC) and results in very long time scales for the storage tank to reach equilibrium.  Lastly, if 

the refrigeration lift is greater than the heat leak, the liquid density will increase (i.e. the liquid will 

“densify”) and its temperature and pressure will decrease.  Densifying at the saturation point 

presents unique challenges.  Notably, once the liquid is cooled below its normal boiling point, the 

pressure becomes sub-atmospheric after which air intrusion into the vessel becomes an obvious 

and real possibility.  This situation can be exacerbated by having numerous and/or large fluid 

penetrations, so careful thought and engineering must be applied to decrease the possibility of 
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leaks.  Additionally, most storage tanks are not designed to withstand external pressure, therefore 

the fundamental pressure vessel design must account for this additional load case. 

As a result of recent GODU-LH2 testing efforts, the potential for IRAS technology to 

substantially change the way cryogenic liquids are stored and transported is only beginning to be 

realized.  The door has been successfully opened for possible advanced liquid hydrogen hardware 

and operations at the KSC launch complex, and the extension to future designs and applications 

will require a thorough understanding of the unique design, behavior, and response of the GODU-

LH2 system in order predict performance, meet economic objectives, and identify potential areas 

of improvement.  This thesis will labor to those ends by focusing on analyzing various aspects of 

the system performance via generalized physics models, and comparing those to actual data 

gathered during GODU-LH2 testing.    
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CHAPTER TWO: LITERATURE REVIEW 

In the 1950s, some work was published regarding integrating cryogenic refrigerators and/or 

reliquefiers with liquid hydrogen storage tanks by individuals affiliated with the National Bureau 

of Standards (NBS) Cryogenics Engineering Laboratory in Boulder, CO [8, 9].  These works were 

driven by the scale-up of hydrogen liquefiers in support of the hydrogen bomb program, and were 

principally centered on the transport and the keeping of LH2 for long durations (i.e. ZBO) at 

relatively small volume scales (< 4,000 L).  Most notably, a transport truck was built that housed 

a custom helium refrigerator that supplied cooling to a coil located in the ullage (i.e. vapor space) 

of a 2,000 L storage tank.  This configuration allowed for ZBO by re-condensing boiloff vapor, 

but was never intended to be used to condition the bulk liquid as was IRAS.   

In 1954 Pastuhov spoke of the applicability of closed-loop helium refrigeration for 

eliminating boiloff in liquefied gas containers, and extended the concept to fluids other than 

hydrogen by submitting design specifications for a machine capable of producing 1,500 W of 

refrigeration at 96 K to preserve liquid oxygen [10]. 

More recently, NASA has explored active refrigeration for use in long duration space 

missions, where keeping of cryogenic propellants is of vital importance [11, 12]. Various rounds 

of analysis and testing of flight-like ZBO systems have been conducted and show encouraging 

results; however, to-date no in-space or zero-gravity demonstrations have been accomplished. 

In 2004 the first small scale IRAS-type system was demonstrated by integrating a Gifford-

McMahon cycle cryocooler with a 180 L storage vessel by Notardonato et. al. at the Florida Solar 

Energy Center in Cocoa, FL [13].  This test successfully demonstrated the ability to liquefy 
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hydrogen from a gaseous source inside the vessel, provide indefinite zero boiloff, and to densify 

below the normal boiling point using heat removal alone.  

In 2010, a larger IRAS test was conducted at KSC using a 400 L liquid oxygen storage 

tank with an integrated flow-through liquid nitrogen heat exchanger [14].  The heat exchanger 

height was varied in order to determine what affect it may have on the ability of the refrigerant to 

condition the liquid.  Results revealed the position of the heat exchanger had little effect, and 

guided the design of the large GODU-LH2 unit. 

Most recently, the design, build-up, and individual test results of the large scale GODU-

LH2 IRAS system at NASA KSC have been reported [7, 15-20].  GODU-LH2 testing 

demonstrated ZBO, liquefaction, and densification of hydrogen at various fill levels, with volumes 

up to 125,000 L.  These results proved the applicability of IRAS for keeping and conditioning of 

cryogenic liquids on scales relevant to launch pads, as well as for a host of other industrial interests, 

and directly influenced the decision by the GSDO program to incorporate it into the design of the 

new LH2 sphere at KSC. 
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CHAPTER THREE: TEST SETUP 

GODU-LH2 Design 

Build-up of the GODU-LH2 system began in 2012 in a remote area of Kennedy Space 

Center where hazardous LH2 testing could be safely conducted.  At a high level, the overall system 

consisted of two primary subsystems—the IRAS tank, and the refrigerator—as well as various 

supporting ancillary hardware such as pneumatics, electrical, liquid nitrogen, cooling water, and 

other subsystems.  Each of the subsystems was built-up and integrated together over the course of 

two and a half years in an empty grass field, culminating in the full system shown in figure 3. 

 
Photo: NASA 

Figure 3: Aerial View of the GODU-LH2 System 
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Residing 183 m west of the test hardware shown in figure 3 was a 30.5 m by 30.5 m steel 

hanger that acted as a hardware staging and work area, provided equipment storage, and housed 

an air conditioned trailer that served as the control room.  Command and control signaling and 

data channels were run to and from the control trailer out to the test site via buried Ethernet cables.   

Due to the scope and complexity of the test program, as well as various procedural and 

regulatory requirements, the fluid system design was particularly challenging.  In all, seven 

different fluid commodities were utilized in the design (GN2, GHe, GH2, LN2, LH2, water and air), 

each requiring specific, and in some cases sophisticated, hardware and implementation strategies. 

A significant objective that drove the overall system architecture was that the refrigeration 

system be located near the IRAS tank so as to limit parasitic heat losses into the cold helium 

refrigerant as it was piped between the two components.  This objective in turn presented its own 

set of challenges because the project was also required to comply with national safety standards 

such as the National Fire Protection Association (NFPA) National Electric Code (NEC), which 

places restrictions on electrical equipment operating in proximity to flammable commodities 

(within 7.6 m for LH2).  This requirement at least partially drove the decision to house much of 

the equipment, including the refrigeration system, inside a standard 12 m ISO shipping container—

this allowed the entire container to be kept at a positive pressure using a blower fed by air from 

outside the NFPA zone.  Placing the refrigerator close to the IRAS tank effectively defined the 

layout of the rest of the site—along with the general desire for site compactness and operational 

efficiency—since almost every other subsystem interfaced with these two components. 
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IRAS Tank 

The dominate component of the GODU-LH2 system architecture was the integrated 

refrigeration and storage tank, custom-built (retrofitted) by the project team at KSC.  Originally 

constructed in 1991 by Minnesota Valley Engineering, the vessel spent most of its life as the 

primary LH2 storage tank at launch complex 40 on Cape Canaveral Air Force Station (CCAFS) in 

Florida in support of the Titan launch vehicle.  Upon completion of the Titian program in 2005, 

possession of the vessel was transferred to NASA, and plans to utilize it for large scale IRAS 

testing began soon thereafter. 

Original Construction 

A horizontal-cylindrical configuration, the tank has 2:1 elliptical heads and a maximum 

NBP liquid hydrogen volume of 125,000 L.  It is a dewar-type vessel for maximum thermal 

performance—vacuum-jacketed with 80 layers of aluminum foil and fiberglass paper insulation in 

the annular space—with original pressure and temperature ranges of 0 to 554 kPa(g) and 20 K to 

311 K respectively.  The outer jacket measures roughly 23 m long and 3.4 m in diameter, while 

the inner tank length and diameter are 21.8 m and 2.9 m respectively.  Fluid penetrations into the 

vessel consist of three 7.6 cm liquid transfer ports, a 10.2 cm primary vent port, a 58.4 cm man-

way port, and three smaller (≤ 25 mm) ports used for liquid level sensing and sampling.  The man-

way port is the only point of entry into the inner vessel for personnel and materials, and is sealed 

by a vacuum-jacketed capacitance probe by the original manufacturer.  Figure 4 shows the tank as 

it was being placed at the GODU-LH2 site, prior to any IRAS modifications. 
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Photo: NASA 

Figure 4: GODU-LH2 Storage Tank Prior to IRAS Modifications 

IRAS Modifications 

Extensive modifications had to be made to transform this relatively standard LH2 storage 

vessel into an advanced IRAS tank, and to accommodate the various GODU-LH2 test objectives.  

Detailed accounts of the design and construction of the modifications have been covered in the 

reference material [18-20], thus only a high level description will be presented here to provide an 

overall understanding of the IRAS tank and its operation.   

Most of the modifications were focused on the inside of the vessel, and included four major 

components: (1) the internal heat exchanger, (2) internal stiffening rings to allow for sub-

atmospheric densification testing, (3) an updated man-way plug with provisions for helium 

refrigerant inlet/outlet ports and instrumentation feedthroughs, and (4) temperature sensor rakes 

placed throughout the tank to map the horizontal and vertical temperature profiles within the 

hydrogen.  Other modifications were recertification of the vessel to the new temperature and 
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pressure conditions—13 K to 311 K and -87.6 to 554 kPa(g) respectively—per the American 

Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (BPVC) requirements, 

and implementation of helium purge bags at each connection with the pressure boundary in case 

of a leak during densification testing.  

Design and implementation of the internal modifications is best described as a “ship-in-a-

bottle” approach.  Because the small man-way was the only point of entry, and because no welding 

was permitted inside the vessel, the heat exchanger, stiffening rings and rakes all had to be 

modular.  Engineering ingenuity resulted in an elegant, synergistic design solution wherein the 

stiffening rings acted to not only strengthen the inner tank, but also provided a backbone of sorts 

for suspension of the heat exchanger and rakes. 

The IRAS heat exchanger consisted of roughly 290 m of stainless steel tubing distributed 

throughout the fluid volume.  Helium inlet (lower) and exit (upper) manifolds constructed of 25 

mm diameter tubing ran axially down the length of the tank, and were suspended from the 

stiffening rings at the 25% and 75% fill levels via stainless steel wire.  Connecting these manifolds 

were forty 6.4 mm diameter tubes, evenly spaced, and bent into a 3-dimensional shape that 

followed the curvature of the tank wall.  Total heat transfer area of the heat exchanger was 

approximately 8 m2, and the entire assembly was secured together using ultra-low-leak Swagelok 

VCR fittings with silver plated nickel gaskets.  Helium refrigerant entered the heat exchanger 

through the man-way plug, flowed into the bottom manifold through a stainless steel flexhose, 

where it was distributed down the length of the tank and flowed up to the top manifold through the 

6.4 mm coils.  Gathering in the top manifold, the helium was plumbed into another flexhose and 

flow back out the man-way to the refrigerator.  In an effort to more evenly distribute the cold 
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power throughout the entire fluid volume—even though the heat exchanger was adequately spread 

out, the coldest helium would still exist at the inlet, which would create a undesirable region of 

localized cooling—custom orifice plates were utilized at the VCR interface between the 6.4 mm 

coils and 25 mm bottom manifold to balance the mass flow rate across the heat exchanger.  These 

orifices were precision fabricated by a wire-EDM machine using blank VCR gaskets, and the 

unique hole sizes were determined from a fluid model of the heat exchanger built and analyzed 

using off-the-shelf thermo-fluid software. 

An updated man-way plug was designed and fabricated by NASA Stennis Space Center 

(SSC) in Mississippi, and was similar to the original unit save three 38 mm bayonet style fluid 

penetrations for GHe supply/return and GH2 feed, instrumentation feedthroughs that featured 96 

total wires, and aluminum baffles on the liquid-facing side to decrease heat leak. 

Temperature rakes were secured to the stiffening rings at three locations within the tank; 

these rakes were used to locate a total of 20 silicon diode sensors at various vertical and horizontal 

positions to map the hydrogen temperatures.  These rakes consisted of a vertical 38 mm by 38 mm 

aluminum box channel with horizontal G-10 fiberglass arms and stand-offs to thermally isolate 

the sensors and provide modularity for construction inside the tank.  One rake, housing only 

vertical sensors, was located at the middle of the tank, while the two others had both vertical and 

radial sensors (3 arms each), and were placed at each end—one 4.1 m from the middle and the 

other at 6.2 m.   

In addition to the 20 sensors located on the rakes, four others were employed to read helium 

temperatures at the inlet and outlet of two different 6.4 mm coils in an effort to characterize the 

heat exchanger performance.  Custom feedthroughs were devised and built to connect the helium 
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flow stream sensor wires to the man-way feedthrough.  Figure 5 shows a cut-away of the IRAS 

tank CAD model, and calls out the significant components. 

 
Figure 5: Cut-Away of GODU-LH2 IRAS Tank 
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away on the concrete pad.  Each unit had an error of ±1.0% of full scale (i.e. ±6.89 kPa) within the 

ambient temperature range with which they were subjected.  Liquid level gauging was 

accomplished via differential pressure measurement between the bottom of tank and the ullage 

space.  A Dwyer Instruments 3100D model differential pressure transmitter with a 0-56 mmHg 

range was employed for this, and had an accuracy of ±0.075% of full scale (±0.042 mmHg).  

Differential pressure measurements were linked to the equivalent head of LH2, and then the head 

to inner tank geometry to establish the liquid height (i.e. the liquid level).  Lastly, a hydrogen mass 

flow meter was installed in the vent system to characterize the heat leak into the IRAS tank at 

different fill levels by measuring the steady-state boiloff rate.  A Brooks Instruments unit was 

tasked for this measurement; model SLAMf63 with a 0-900 slpm range and an accuracy of ±0.18% 

of full scale (±1.6 slpm). 

Figure 6 shows the layout of the 20 silicon diode temperature sensors within the tank, 

designated TT1 thru TT20, and table 2 reports each sensors relative coordinates.   

 

Figure 6: Layout of Temperature Sensors inside the IRAS Test Tank 
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Table 2: Temperature Sensor Coordinates inside the IRAS Test Tank 

Sensor # X-dir Y-dir Z-dir Sensor # X-dir Y-dir Z-dir
TT1 -4.11 0.57 0.16 TT11 -4.11 1.24 0.00
TT2 -4.11 0.57 -0.99 TT12 -4.11 1.24 1.27
TT3 0.12 0.57 0.08 TT13 -4.11 2.12 0.00
TT4 0.12 0.92 0.08 TT14 -4.11 1.85 -1.22
TT5 6.27 0.57 0.00 TT15 0.12 1.85 0.08
TT6 6.27 0.57 1.15 TT16 0.12 2.12 0.08
TT7 6.27 1.24 0.16 TT17 6.27 2.12 0.00
TT8 6.27 1.24 -1.10 TT18 6.27 1.85 1.39
TT9 0.12 1.24 0.08 TT19 6.27 2.72 0.00
TT10 0.12 1.54 0.08 TT20 -4.11 2.72 0.00

Distance, mDistance, m

 
Directions correspond to the coordinate system in figure 6 
 
 

In order to characterize the behavior of the IRAS system when the tank is low versus when 

it is full, four fill levels were part of the GODU-LH2 test program: 33%, 46%, 67% and 100%.   

At the 33% fill level (31,250 L) the liquid-to-vapor interface fell just above TT4; at 46% full 

(57,500 L) it was located very close to TT7, 8, 9, 11 & 12; at 67% (83,750 L) it resided between 

TT10 and TT15, 14 & 18; and at 100% full all sensors were submerged except for TT19 and TT20.   

Refrigeration System 

Choice of refrigeration system was driven by three key factors: (1) because the heat 

exchanger was designed as a flow-through type configuration, the refrigerator had to supply a 

continuous flow of refrigerant in a closed-loop; (2) since the cold load was LH2 (NBP of 20.4 K) 

the choice of working fluid was effectively limited to helium; and (3) preliminary analysis of the 

storage tank thermal performance yielded an estimated heat leak of around 335 W (see chapter 4).  
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Therefore the refrigerator had to provide at least this much cooling power, plus margin, in order 

to successfully achieve all the test objectives.  After considering numerous options, a Linde 

Cryogenics model LR1620 machine was chosen, with an RSX helium compressor.  The LR1620 

employs a reverse-Brayton cycle with twin parallel piston expanders and four stage of 

recuperation, while the RSX compressor could supply up to 22 g/s of helium at 1655 kPa(g) and 

required 480 VAC 3-phase 60 Hz electrical power.  To supplement the base cooling capacity, the 

option for LN2 precooling was chosen for the GODU-LH2 unit—which required additional 

hardware and a sacrificial commodity, but boosted the refrigeration performance by roughly a 

factor of 2.  Rated capacities were 390 W at 20 K without precooling, and 850 W with precooling; 

however, initial performance testing yielded slightly better results of 500 W and 900 W, 

respectively.  When compared to the estimated IRAS tank thermal performance, lift-to-heat leak 

ratios of 2.7 and 1.5 were achieved with and without precooling, respectively; and as will be seen 

later, these ratios were found to be higher during testing due to an overestimated tank heat leak.   

Control of the cooling power was achieved by introducing heat into the helium supply just 

after the expansion engine via an in-line resistive heater.  Control over this heater was built into 

the stand-alone Linde software, and responded to a given temperature set point.  However, to 

accommodate the unique GODU-LH2 test objectives, software was developed that could override 

this feature and control the heater based on a given tank pressure set point.  This technique allowed 

the lift to be varied automatically in order to achieve a constant tank pressure during ZBO-PC 

testing. Figure 7 shows the LR1620 unit and RSX compressor from two different vantage points 

inside the aforementioned refrigeration system container. 
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Photos: NASA 

Figure 7: GODU-LH2 Refrigeration System 
(Foreground left: RSX compressor & control panel; Foreground right: LR1620 refrigerator) 

Ancillary Systems 

Many smaller subsystems were necessary to facilitate the overall IRAS system.  The most 

significant of these were the close-loop water chiller, pneumatics, and LN2 storage/transfer 

systems.  A chilled water supply was necessary in order to reject both the heat of compression (in 

the helium) as well as to cool the RSX compressor oil.  Also integrated into a separate smaller 

standard shipping container (6 m long), the chiller unit was designed to reject 96 kW to the 

ambient, provide the compressor with a constant supply of 289 K water at a maximum flow rate 

of 95 L/min, and fully comply with NFPA rules.  Five 16.5 MPa mobile storage units (MSU), three 

GN2 and two GHe, fed various panels repurposed from the Space Shuttle Program that in turn 

provided purge and actuation pressure to the site.  In total, roughly 5660 scm of inert gaseous 

storage was permanently on-site, and GH2 was supplied by 25.5 MPa transportable compressed 

gas trailers (CGT) on a test-by-test basis.  Lastly, LN2 was stored on-site in a 21,200 L US 

Department of Transportation (DOT) approved tank placed adjacent to the refrigeration container.  
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When operating in precooling mode the DOT vessel supplied LN2 to the refrigerator through 

vacuum-jacketed hard piping, and the Linde control software maintained a pool of boiling liquid 

inside the refrigerator using a bang-bang control scheme.  Helium refrigerant from the compressor 

was partially routed through the LN2 heat exchanger, dropping its temperature close to the boiling 

point of LN2 before being fed back into the recuperators.  Boiloff vapor was vented to atmosphere 

out the side of the refrigeration container.  Figure 8 shows a simplified functional diagram of the 

entire GODU-LH2 system. 

 
Figure 8: Simplified Functional Diagram of the GODU-LH2 System   
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Data Acquisition 

Three independent systems were used to capture and record the various data from the 

GODU-LH2 testing.  All IRAS tank temperature and mass flow data were recorded using a custom 

built Labview program, and saved to text files; refrigerator data such as temperatures, pressure, 

and valve positions were recorded by the Linde-supplied software, which generated a new Excel 

spreadsheet daily; and the IRAS tank pressure and liquid level readings were captured by another 

custom built program using Data Historian software, and saved to an on-site server.  In order to 

simplify post-test analysis, these three data files were combined into a master Excel spreadsheet 

for each test series.   

Testing Program 

The original test program consisted of performing four individual tests—(1) a steady-state 

boiloff test to determine tank heat leak, (2) ZBO, (3) liquefaction, and (4) densification—at three 

different fill level targets: 30%, 60%, and 90%.  Secondary objectives were to perform a zero-loss 

cooldown of the tank prior to introducing LH2, and zero-loss off-loads of liquid from the tanker 

trucks at each fill level.  Ultimately, an additional level was added to make up for down time 

associated with equipment failure, so testing was performed at four different liquid levels: 33%, 

46%, 67%, and 100%.  Also, the discrepancy between the target and actual levels tested was due 

to the fact that the quantity of liquid that was actually unloaded into the IRAS tank from the tankers 

depended on numerous, uncontrollable factors; so, in each case the target level was overshot.   ZBO 

was also performed by three separate methods (described previously).  In all, 21 separate tests 

were performed during the course of the GODU-LH2 campaign.  
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Testing officially began in April 2015 with the zero-loss cooldown of the IRAS tank.  The 

refrigerator was run at full capacity, and GH2 was introduced into the vessel periodically using a 

mass flow controller in order to maintain pressure.  Over the course of one month the tank 

temperature was brought from ambient down to ~20 K with no loss of hydrogen, which allowed 

for the initial no-loss off-load of LH2 to bring the fill level to 33%.  During the tanker operation, 

the IRAS tank vent valve remained closed, and the tanker transferred roughly 41,250 L of liquid 

into the vessel.  Because the truck was unable to vent while in-route from Alabama, the transferred 

LH2 was saturated at a higher pressure (and temperature) than the receiver tank.  This condition 

resulted in rapid boiloff of the transferred product, and a subsequent pressure rise in the tank while 

its saturation condition came back into equilibrium.  This pressure build-up was expected, and was 

monitored closely to ensure it did not approach the tank maximum.  Once the transfer was 

complete, the refrigerator was brought back online and the pressure immediately began to 

decrease, ultimately settling at the chosen set point.  A similar process was repeated at each fill 

level, proving that IRAS can afford a user the ability execute completely zero-loss transfer of liquid 

product from a transportable tanker to a stationary storage vessel. 

 Typically following a stabilized tanker operation was a period of steady-state boiloff 

testing (i.e. without refrigeration) to determine the tank performance as a function of liquid level.  

This objective was achieved via the method known as boiloff calorimetry, wherein the boiloff 

gases from a test vessel are recorded using a mass flow meter over a long enough duration of time 

to ensure steady-state is achieved (i.e. the pressure and boiloff flow rate are essentially constant).  

Because the liquid is saturated, any heat it absorbs is converted directly into vapor, the quantity of 

which is a function of the latent heat of vaporization (hfg) of the particular fluid.  Therefore, once 
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the steady-state mass flow rate is known the total heat leak into the liquid can be easily determined 

by simply multiplying it by hfg.  For high precision lab calorimeters, this process may capture the 

entirety of the heat load; however, for certain fluids, and/or real-world tanks, sensible heat can also 

be absorbed by the vapor, resulting in a large deviation in temperature at the top of the ullage space 

compared to the saturation temperature at the liquid-to-vapor interface. This situation is 

exaggerated when the ullage volume is large compared to the liquid volume also (i.e. for low liquid 

levels), which can lead to significant errors in total heat load estimation if only the latent heat is 

accounted for.  For the GODU-LH2 IRAS tank, this additional heat load was determined by using 

the upper-most silicon diode reading, closest to the vent (TT19 in figure 6), along with the fact 

that the pressure was constant and known.  From these two quantities the enthalpy of the vapor 

leaving the tank could be found, and from there the sensible heat absorbed by the ullage calculated. 

Once the heat leak was established at a given fill level, zero boiloff, liquefaction, and 

densification testing commenced.  Order and duration of each test was driven by numerous factors, 

hence was not always consistent between fill levels.  For example, ZBO-PC and densification 

testing had to be moved from the 33% level to 46% due to a lengthy and unanticipated down-time 

due to failure of the helium compressor—this was, however the only such instance of test 

sequences being split between fill levels; 67% and 100% saw full test programs.  Also, liquefaction 

was only performed at the 33% and 67% fill levels due to budget and time constraints.  Extensive 

details of individual tests have been reported previously [15-18], therefore will not be greatly 

elaborated upon here.  However, high level results for each fill level will be presented in the next 

section, as well as more detailed data of particular tests required to substantiate the proceeding 

analysis. 
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Testing Results 

End-to-end results at each LH2 fill level and a summary of the IRAS tank heat leak 

testing/analysis are presented in the following sections.  Each of the end-to-end plots reports all 

hydrogen temperature readings inside the tank (solid lines), as well as the tank pressure (red dashed 

line).  Diode call-outs correspond to figure 6 and table 2.  Different tests are delineated by vertical 

lines and individually labeled for clarity, and curve colors are common between plots.  The x-axes 

are in units of hours, however, because the tests were not always carried out in a sequential fashion 

they are purposely not labeled, and some discontinuities exist between adjacent test series.  Small 

gaps in data are also present within some test series due to intermittent data drop-outs, usually 

associated with weather or maintenance.  A 200 hour gauge is supplied to give a sense of temporal 

scale, and can be applied within an individual test series but cannot be summed across them (i.e. 

across vertical lines).  Additionally, “analysis regions” are shown within each densification and 

ZBO-PC test series that establish the time slices corresponding to the analyses presented in chapter 

4.  Table 3 and its corresponding figure summarize the IRAS tank heat leak results/trends, and will 

also be instrumental in the forthcoming analyses. 

33% and 46% Fill Level 

Figure 9 shows the end-to-end testing at the 33% and 46% LH2 fill levels.  As was 

mentioned previously, unexpected equipment failure during the 33% campaign, prior to 

densification and ZBO-PC testing resulted in a long delay, which forced a refill.  Because the 

second LH2 tanker arrived with more liquid on-board, and it was impractical to attempt to precisely 

fill the IRAS tank back to the previous level, the resulting transfer filled the vessel to 46%.  This 
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is reflected in figure 9 by the large discontinuity (done deliberately) between liquefaction and 

densification testing.  In total, the graph spans around 1 year worth of actual time—beginning and 

end dates were May 21st 2015 (33% tanker off-load) to May 2nd 2016 (end of ZBO-PC testing). 

 
Figure 9: 33% & 46% End-to-End Test Results 

67% Fill Level 

Testing at the 67% fill level began on May 3rd 2016 with the second zero-loss off-load of 

LH2 into the IRAS tank, and ran until August 2nd 2016.  Figure 10 shows the end-to-end results 

for the test campaign.  Unlike the lower fill levels, a full series of uninterrupted tests were 

successfully conducted, which is reflected in the plot by only one discontinuity between individual 
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tests (from boiloff to ZBO-DC, which is only due to compression of the timeline on the graph, not 

system down-time as with the 33% program above). 

 
Figure 10: 67% End-to-End Test Results 

100% Fill Level 

Finally, the tank was filled to 100% on August 3rd 2016, and testing ran through October 

1st 2016, at which point the GODU-LH2 project officially ended.  Figure 11 shows the end-to-end 

testing at the 100% fill level.  The unlabeled region between the tanker off-load and boiloff test 

was attributed to an unplanned refrigerator shut-down, which is reflected in the data as a pressure 

and temperature spike, and the tail-end region marks the end of testing operations. 
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Figure 11: 100% End-to-End Test Results 

Discussion of End-to-End Results 

Comparing figures 9, 10 and 11 reveals many similarities between tests at the different fill 

levels.  Tanker off-loads and ZBO-DC testing show a signature pressure spike and temperature 

stratification, followed by a rapid de-pressurization and isothermalization once the refrigerator was 

brought online; proving that IRAS can be used not only for steady state operation, but, more 

importantly, for transient control also.   

Boiloff tests comprised a large portion of each campaign, and are recognizable by the 

constant pressure and liquid temperatures, as well as the thermal stratification within the ullage.  

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

14

18

22

26

30

34

38

42

46

50

Pr
es

su
re

, k
Pa

(a
)

Te
m

pe
ra

tu
re

, K

TT1 TT2 TT3 TT4 TT5 TT6 TT7
TT8 TT9 TT10 TT11 TT12 TT13 TT14
TT15 TT16 TT17 TT18 TT19 TT20 Pressure

Boiloff
Testing

Tanker
Off-Load

ZBO-TC
Testing

ZB
O

-D
C

Te
st

in
g

Densification
Testing

ZBO-PC
Testing

200 hours

Transient
Analysis Region

Steady
State

Analysis
Region



33 
 

Although the ullage temperatures never fully stabilized, the decision was made to declare state-

state reached, and proceed with subsequent tests because the mass flow and pressure were constant. 

ZBO-PC testing produced a square wave type pressure curve as the refrigerator varied the 

lift in response to a change in the pressure set point from both above and below the steady state 

pressure—interestingly, because the control algorithm tried to obtain the set point as fast as 

possible, when approaching it from below it forced the refrigerator heater to input more heat than 

was entering the tank naturally; or in other words, the refrigerator became a heater.  Once a chosen 

set point was achieved however, the system was able to maintain it indefinitely by simply varying 

the lift capacity. 

ZBO-TC tests consisted of simply entering a refrigerator outlet temperature, and allowing 

the hydrogen pressure and temperature to trend toward equilibrium.  Unfortunately, the response 

of the system was such that the time scales required to reach equilibrium were too long to manage 

within the project schedule.  This stands out in the three figures as non-constant pressure curves.  

At the 33% fill level the pressure decreased during ZBO-TC testing, whereas at the 67% and 100% 

levels it increased.  This was due to both the quantity, and the progressively decreasing value of 

the set points tested at 33% (beginning at 20 K and ending at 16 K).  Due to schedule, an outlet 

temperature of 18 K was the only set point able to be tested at the 67% and 100% fill levels, which 

could not stabilize the hydrogen within the allotted time.   

Liquefaction testing at the 33% and 67% fill levels produced chaotic curves due to the 

periodic introduction of warm GH2 into the tank.  Although the system was not optimized for 

liquid yield, steady state liquefaction was nonetheless achieved, producing around 200 kg of LH2 
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total.  This proved that IRAS can be used for in-situ liquefaction, but would require some additional 

sub-systems, such as precooling, and an ortho-to-para reactor, to maximize the liquid yield. 

Lastly, the most significant portion of each campaign was dedicated to densification 

testing.  These operations produced characteristic sub-atmospheric de-pressurization curves, and 

hydrogen temperatures well below the NBP—in fact, tests at the 46% and 67% fill levels yielded 

liquid temperatures down to and below the triple point, resulting in the production of large 

quantities of solid hydrogen.  Testing at 100% was terminated prior to reaching the triple point due 

to schedule unfortunately.  A notable feature common to all three tests is the divergence of TT19 

from TT20.  The cause of this is unknown, but it is surmised that helium could have been leaking 

in through the primary vent line from a purged connection outside.  This is plausible because the 

densification tests were the only time this was witnessed, and is also the only time the tank was 

subatmospheric.  Additionally, TT19 is closest to the vent opening inside the tank.  However, post-

test sampling of the tank revealed almost pure hydrogen content, so the cause of the divergence is 

still a matter of debate. 

The combination of densification and ZBO-PC testing represented a landmark achievement 

for the GODU-LH2 project and IRAS technology, as it proved that full control over the cryo-fluid 

properties is achievable anywhere along the saturation curve, from the triple point to the maximum 

allowable working pressure of the vessel.  This is an ability unique to IRAS, and one never before 

available.  In addition, the demonstration of IRAS to create large batches of solid, and/or slush 

product, with no loss of commodity, is unprecedented.  It is estimated that densification at the 46% 

fill level produced the largest single batch of solid hydrogen in history: 1,020 kg, with a solid-to-

liquid mass fraction of 25%, or around 11,780 L of solid material. 
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IRAS Tank Heat Leak Results 

Table 3 summarizes the results of the boiloff calorimetry testing carried out at each fill 

level, and figure 12 shows the trends for each heat leak component as a function of liquid level.  

The curve fit equations presented in figure 12 will be used in the chapter 4 analyses.   

Table 3: IRAS Tank Heat Leak Results 

 Boiloff 
Flow 
Rate

Tank 
Pressure

Avg. 
Liquid 
Temp.

TT19 
Reading

Liquid 
Heat 
Load

Ullage 
Heat 
Load

Total 
Heat 
Load

Total 
Heat 
Flux†

slpm kPa K K W W W W/m2

33% 255 104.8 20.2 49.5 170 120 290 1.26

67% 295 114.5 20.5 41.3 196 100 296 1.28

100% 351 109.6 20.3 34.5 234 81 315 1.36

Fill 
Level

† Based on log-mean area between the outside of the inner shell and the inside of the outer shell 

 
Figure 12: IRAS Tank Heat Leak Trends 
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Table 3 reveals that the total IRAS tank heat leak was relatively constant with respect to 

the fill level, varying by only 8% from 33% to 100% full.  Also, the pre-test estimate of 335 W 

was proven to be conservative, which translated to higher lift-to-heat leak ratios and quicker 

system response times.  Using an average heat leak of 300 W, and the actual refrigerator lift 

capacities presented above, yields lift-to-heat leak ratios of 1.7 and 3, with and without LN2 

precooling, respectively.  These are >20% higher than estimates from the pre-test analysis. 
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CHAPTER FOUR: ANALYSIS 

Overview 

Analysis focused on the two different regimes presented in figures 9 through 11: transient 

and steady state.  Transient models examined the behavior and response of the system during 

densification testing (i.e. predicting the rate of depressurization and temperature decrease); while, 

during steady state ZBO-PC operation the tank pressure and temperatures were constant, therefore 

the analysis was primarily focused on exploring the initial sizing of the refrigerator, tank heat leak, 

and how closely the actual performance matched expectation. 

Multiple predictive physics models were developed in an effort to better understand the 

behavior of the GODU-LH2 system over time.  Each model was built on assumptions that evolved 

based upon how accurately the previous model predicted the test data, which ultimately led to two 

unique transient schemes.  Interestingly, the accuracy of a particular model appeared to be 

dependent on the LH2 fill level; therefore, none of the models could be called “best,” or “most 

accurate” across all fill levels.  Although the GODU-LH2 test data was used to anchor the analysis, 

the models were purposely generic—applicable to any tank size/geometry, and any desired 

cryogenic fluid—with the goal of predicting the performance of future IRAS systems. 

Transient Analysis Data Envelope 

One of the most unique and enabling capabilities of the IRAS technology is its ability to 

densify large quantities of stored commodity.  Because the tank is a closed-system during this 

operation the pressure decreases as heat is removed by the refrigerator.  Eventually the pressure 

will fall below atmospheric, effectively transforming the vessel into a large vacuum chamber.  
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Because of this added complexity the behavior of an IRAS system during densification is of 

particular importance and interest, hence much attention was afforded to the analysis of these tests. 

Developing predictive models that could capture every conceivable system perturbation, 

such as changes in lift capacity due to refrigerator valve adjustments, would be exceedingly 

difficult.  Instead, the models assumed consistent, but not necessarily constant, parameters over 

time.  Because of this approach, test data had to be chosen that accurately reflected this reality in 

order to anchor the analysis; meaning that time slices from the three densification tests had to be 

chosen during periods when the system was operating consistently, and without interruption.  Also, 

the duration of time had to be long enough to sufficiently capture the system behavior.  At the 46% 

and 100% fill levels the analysis envelope was 100 hours in duration (from test time = 0 to 100 

hours at 46% full, and from 150 to 250 hours at 100%), and 150 hours long at 67% full (from test 

time = 50 to 200 hours); these correspond to the regions called out in figures 9-11.  Within these 

envelops the depressurization and temperature decrease was relatively smooth and consistent, 

fulfilling the requirement for stable system operation needed to match the physics models.  

Refrigerator performance data from these time periods were fed into the respective models, and 

the outputs compared to the hydrogen data shown in the chapter 3 plots. 

Transient Physics Models 

All of the transient models were constructed in Microsoft Excel, and coded in Visual Basic.  

This allowed for use of an Excel imbedded fluid properties solver known as the Reference Fluid 

Thermodynamic and Transport Properties Database (RefProp) to obtain the hydrogen and helium 

properties as a function of different parameters.  RefProp was developed and distributed by the 
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National Institute of Standards and Technology (NIST) as a tool for scientists and engineers to 

better understand the behavior of fluid systems by linking properties predicted by equations of 

state to actual test data gathered by the Thermophysical Properties of Fluids Group [21].  

Spreadsheets were setup with user-defined initial and boundary conditions such as total tank 

volume and fill level, tank pressure, and hydrogen temperature(s).  These values were then fed into 

a separate part of the spreadsheet that calculated new quantities based on the particular model 

methodology.  The Visual Basic code handled iterative duties such as time accumulation and 

converging certain fluid properties for a given time step, and tabulated the properties of interest 

for comparison to test data.  Both constant and variable helium inlet conditions (temperature, 

pressure and mass flow rate) were explored, and because the hydrogen used during testing began 

as liquid (expect for a tiny amount created during liquefaction testing), all hydrogen properties 

called by RefProp were for para-hydrogen. 

Models were lumped node type schemes, forward-stepping in time.  In general, liquid and 

vapor regions were defined as different nodes, and then the ratio of environmental heat leak-to-

calculated refrigerator lift was used to determine how the hydrogen pressure and temperature were 

affected over time.  The models also took into account the migration of mass from the ullage into 

the liquid via condensation as a result of the excess refrigerator lift.  Variable helium inlet 

conditions were determined from refrigerator performance data captured by the Linde software 

over the chosen time slice (curve-fit equations of this data were used in the models), and constant 

properties were simply averaged over the same time period.  Lift was calculated by prescribing a 

certain condition for the helium exiting the IRAS heat exchanger, and for sake of reducing model 

run times, pressure drop across the heat exchanger was assumed to be zero—this decision was 
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reached after sensitivity analysis showed very little change in model accuracy when accounting 

for varying pressure through the tubing.  The models also took into account the heat absorbed by 

the helium in the vacuum-jacketed lines on its way to/from the IRAS tank.  This heat leak (36 W 

@ Tmean=24 K) was determined using temperature data gathered across the lines during 

preliminary GODU-LH2 testing (not captured in figures 9-11), and was assumed to be constant 

and equal for both the supply and return lines because they were identical (each had a 25 mm 

diameter inner line, and was 8.3 m long). 

As previously discussed, time slices from densification testing were chosen to explore the 

transient behavior of the GODU-LH2 system.  Of primary interest was the ability of the models to 

predict the rate of depressurization.  Because the ullage pressure was essentially constant 

throughout the tank, this property could be considered a bulk, or non-localized system property; 

as opposed to the hydrogen temperatures which, although almost equal throughout the tank while 

the refrigerator was operating, always showed some vertical stratification.  Since the models were 

not equipped to deal with localized temperature differences, the data used for comparison had to 

be averaged over many diodes, this forced the pressure data to be viewed as higher fidelity.  Figure 

13 shows the depressurization curve for the three densification time slices analyzed 

Because the chosen analysis regions did not always begin with the tank at normal boiling 

point—as can be seen in figure 13, the 67% full region began at a tank pressure of 71.7 kPa(a), 

and the 100% full analysis began at 52 kPa(a)—the difference in liquid-to-vapor mass ratio 

between NBP and the initial model start time had to be accounted for or else the predicted 

depressurization rate would be skewed.  This was accomplished prior to running the transient code 

by calculating the total NBP mass inside the tank at the given fill level, and then comparing that 
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to the value determined using the model starting pressure while varying the vapor volume.  The 

Excel Solver function was used to converge on the initial model vapor volume, which then set the 

vapor and liquid masses that fed into the model as initial conditions. 

 
Figure 13: Densification Depressurization Data Used for Analysis 

(Error bars = ± 6.9 kPa) 

Saturated Model 

The first of the two transient models developed was based on an overarching, simplifying 

assumption that the entire tank was saturated at the given pressure during densification testing.  
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some stratification always existed, the entire tank tended to converge on the saturation condition 

once the refrigerator was brought online.  A completely saturated tank meant that the hydrogen 

properties could be defined by just one parameter (the tank pressure in this case), and both the 

temperature and pressure of the liquid and vapor would be equal.  Additionally, it was assumed 

that all refrigeration lift occurred in the liquid region, and that the temperature of the helium exiting 

the heat exchanger was equal to that of the liquid (i.e. the saturation temperature).  Figure 14 shows 

a representative setup of the saturated analysis with relevant variables called-out. 

 
        Figure 14: Saturated Model Setup 
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Models ran with 15 minute time increments, and each new iteration began by updating the 

helium inlet temperature, pressure and mass flow rate (TGHe,supply, PGHe,supply & ṁGHe respectively) 

per the refrigerator data curve fits (supplied in appendix A), and also took into account the heat 

absorbed in the vacuum-jacketed supply line (Q̇VJ,supply).  By prescribing the heat exchanger outlet 

temperature (THX,out) to the LH2 temperature calculated in the preceding iteration, a new gross heat 

lift could be determined using the updated inlet values; and a net heat lift (Q̇lift) for the iteration 

was determined by accounting for the total tank heat leak (Q̇HL,vap + Q̇HL,liq) per equation 1.  

Q̇lifti = ṁGHei�hHX,in,i − hHX,out,i� −  Q̇total                                            (1) 

Where “i” denotes the time iteration, and “hHX” is the enthalpy of the helium (determined using 

RefProp).  Using this new lift the code calculated an updated liquid temperature per equation 2 

within each time iteration. 

Tliqj+1 = Tliqj −
tiQ̇lifti

mliq,k
Cp,liqj

                                                         (2) 

Where “j” denotes the temperature and specific heat iteration, “k” denotes the mass iteration, “t” 

is the time step, “mliq” is the liquid mass, and “Cpliq” is the specific heat of the liquid.  Because the 

specific heat was itself a function of the temperature, the average temperature between the jth, and 

j+1 iterations were fed into RefProp, and then back into equation 2.  This forced the temperature 

to converge to a more accurate value.  Once a new Tliq was established—which, due to the saturated 

assumption, was also Tvap—an updated tank pressure and liquid density were determined from 

RefProp.  This density was then used to determine a new liquid volume based on the kth liquid 

mass; and because the tank was a closed system, this led to a new vapor volume, density, and 
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pressure.  This new vapor pressure was compared to the liquid pressure; and because both were 

required to be equal in order to satisfy the saturated assumption, the kth liquid mass was adjusted 

up or down slightly depending on which pressure was higher (increased by 0.001% if Pvap>Pliq, 

and decreased by the same amount if Pvap<Pliq), and then substituted back into equation 2.  Once 

the pressures converged, the relevant properties were recorded in various columns on the 

spreadsheet, and the initial values were updated for the next time step.  This nested loop process 

forced the accurate calculation of the thermophysical properties for each time step, and outputs 

could be plotted against actual test data for comparison.  A flow chart detailing the saturated model 

analysis is supplied in appendix B. 

Because the variable helium input conditions were extracted from actual refrigerator data 

gathered during testing, it was information that would not necessarily be known a priori when 

predicting the performance of a new IRAS system.  For this reason, a related analysis was run 

wherein constant helium inlet conditions (i.e. pressure temperature and mass flow rate) were 

prescribed.  The value of each constant boundary condition was an average over the entire time 

slice shown in the appendix A data—information that, again, may not be known up front, but that 

could be reasonably assumed/predicted.  These results were compared to those found using 

variable properties in order to determine the validity of such an approach. 

Table 4 summarizes the fundamental initial conditions for the saturated model at each of 

the three fill levels.  Liquid and vapor volumes were determined based on the total tank volume 

(140 m3) and the maximum useable liquid volume (i.e. the 100% NBP liquid level, or 125 m3).  

Other initial conditions—fluid properties such as specific heat and mass—were determined from 

the fundamental quantities presented in table 4. 
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Table 4: Saturated Model Initial Conditions 

m3 m3 m3 kPa(a) K kPa(a) K g/s

46% 57.5 57.5 82.6 103.0 20.3 148.7 13.2 23.6

67% 83.8 82.6 57.8 71.7 19.2 143.1 12.4 24.8

100% 125.0 121.3 19.1 52.0 18.2 140.5 12.4 25.4

Fill 
Level

Constant GHe Properties
Mass 
FlowTempPress

NBP 
Liquid 

Volume

Initial 
Tank 

Temp†

Initial 
Tank 
Press

Initial 
Vapor 

Volume

Initial 
Liquid 

Volume

 
† Saturation temperature at initial tank pressure 

Saturated Model Results 

Figures 15 through 17 capture the results of the saturated model at each fill level.  Graphs 

are similarly color-coded, and show the IRAS tank pressure and temperature data (averaged across 

diodes 1 through 18, see figure 6) plotted against the model outputs from both helium inlet 

conditions.  Error bars shown in the plots are: pressure = ±6.9 kPa, and temperature = ±0.1 K. 

 
Figure 15: Saturated Model Results at the 46% Fill Level 
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Figure 16: Saturated Model Results at the 67% Fill Level 

 
Figure 17: Saturated Model Results at the 100% Fill Level 
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Discussion of Saturated Model Results 

Examining figures 15 through 17 reveals some interesting details and trends.  First, it is 

obvious from the results across all three fill levels, that assuming constant helium inlet conditions 

lead to dramatically inaccurate predictions of the depressurization and temperature drop.  In each 

case this simulation fell well outside the error envelopes, and were, at times, greater than 50% 

lower than the pressure test data, and 10% lower than the temperature data.  From these results it 

can also be asserted that the assumption of constant refrigerant inlet conditions is not a reasonable 

simplification for modeling.  Some understanding of the behavior of the refrigerant outlet 

conditions as a function of return conditions would probably need to be known when modeling a 

new IRAS system in order to accurately predict the resulting behavior of the stored fluid.  

However, such knowledge should be attainable by either analysis and/or performance testing of a 

given refrigeration system over a range of cold “dummy” loads.   

The simulation employing variable GHe inlet properties predicted both the temperature 

and pressure trends with striking accuracy at the 46% fill level.  Although the pressure predications 

fell within the error bounds at each fill level for the chosen time slices, at 46% full the model 

appeared to almost perfectly mimic the test data.  This was also the case for the temperature 

prediction, although it failed to fall within the error bounds as they were very small (±0.1 K), 

nevertheless, the model trended extremely close to the data, and was consistent for the entire 

duration.  Over the 100 hour time slice examined at the 46% fill level, the average difference 

between the pressure and temperature test data versus the model outputs was 1.7% and 0.8% 

respectively, with maximums of 3.9% and 1.4% respectively.  This result seems to validate the 

overarching simplification that the entire tank was saturated, especially the temperature trend.  



48 
 

Since the temperature data curve was an average over 18 silicon diodes at each time step—both 

submerged and in the vapor space, and spread throughout the tank—the fact that the saturated 

model curve stayed in such close and consistent proximity strongly suggests that the entirety of 

the hydrogen volume was at the saturation condition for at least the time slice examined in figure 

15.  In fact, analysis were run for different time slices at the 46% fill level in order to determine 

whether or not the result presented above was simply a function of initial conditions (namely, that 

the tank began at NBP in figure 15), and in each case the trends were similar.  Interestingly, the 

validation of the saturated model at the 46% fill level was not reflected at the two higher fill levels, 

a topic discussed next. 

Comparing figures 15 and 16, it can be reasonably asserted that the tank was indeed 

saturated at both fill levels, yet the transient response was dissimilar.  The pressure and temperature 

trends at 67% full match the test data quite well, but had larger errors than at 46% full, with 

averages of 10.6% and 1.7% respectively (7.6% and 1.1% through 100 hours), and maximums of 

20% and 3.5% respectively (14% and 2.4% through 100 hours).  Additionally, both the pressure 

and temperature predictions diverge from the data as time increases; this was also seen at 100% 

full, however, it is obvious from figure 17 that the tank was not completely saturated.  As opposed 

to 46% and 67% full, the initial tank temperature at 100% fell roughly 0.7 K below the predicted 

value (which was simply the saturation temperature at the initial pressure), and remained lower 

over the entire simulation time.  Because all of the 18 diodes were submerged at the 100% fill 

level, the temperature curve presented in figure 17 is the average value of the liquid itself.  

Therefore, at least some quantity of liquid must have been subcooled.  In addition, the fact that the 

model over-predicted the depressurization rate suggests that the heat transfer between the liquid 
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and ullage must have been suppressed—this result must also be the case at 67% full also; in fact, 

the pressure error at the 100 hour mark was the same between the two simulations, roughly 14%.  

Unlike the 67% fill level however, virtually the entire heat exchanger was submerged at 100% full, 

save small lengths of the supply and return flex-hoses.  This fact possibly explains the 

aforementioned suppression at the 100% level: perhaps the heat transfer from the vapor to the 

liquid across only the interface is markedly lower than from the vapor to the exposed heat 

exchanger tubing, allowing the liquid to be subcooled, and depressing the rate of depressurization 

(this reasoning partially forms the basis of the second transient model, to be discussed in the next 

section).  However, this reasoning alone does not completely explain the behavior at the 67% level, 

since a large portion of the heat exchanger was exposed to the vapor region during this test.  The 

relationship between the total heat exchanger area and the area of the liquid-to-vapor interface, as 

well as the ratio of heat exchanger area in contact with the vapor versus liquid is presented in 

appendix D for the GODU-LH2 IRAS tank, is thought to play an important role in developing a 

more complete understanding of this behavior; this analysis however, is left to future examinations. 

Subcooled Model 

Following the failure of the saturated model to accurately predict the transient behavior at 

100% full, a separate model was developed that abandoned the totally saturated assumption in 

favor of a more complicated scheme using subcooled liquid.  This subcooled model was predicated 

on three primary assumptions: (1) the vapor was saturated at the tank pressure—and by extension, 

so was the liquid-to-vapor interface; (2) refrigeration lift caused subcooling of the liquid; and (3) 

a layer of saturated liquid (saturated at the tank pressure) separated the ullage from the subcooled 
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liquid.  It was surmised that this saturated liquid layer would act as a thermal resistance, 

suppressing the heat transfer between the liquid and vapor, and increasing depressurization times.  

It was also thought that this was a valid assumption at the 100% fill level due to the fact that the 

heat exchanger was, for all intents and purposes, completely submerged, allowing for a uniform 

layer to exist over virtually the entire liquid-to-vapor surface area.  This approach is similar to a 

model used by Ewart and Dergance in 1978 [22], only the liquid layer was assumed to be stratified 

instead of completely saturated, and wall boundary layers were taken into account that fed the 

stratified layer with less dense fluid (boundary layers were neglected in the subcooled model since 

the GODU-LH2 heat exchanger geometry was such that it could be assumed that any wall heat 

flux was intercepted).  Figure 18 depicts the subcooled model setup. 

 
Figure 18: Subcooled Model Setup 
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The subcooled and saturated models shared many similarities: both assumed all 

refrigeration lift occurred in the liquid, that the temperature of the helium exiting the heat 

exchanger was equal to that of the liquid (subcooled liquid in this case), accounted for heat leak 

into the vacuum-jacketed GHe transfer lines, and used the same scheme to determine initial liquid 

and vapor quantities.  However, where the saturated model converged on the solution that equated 

the liquid and vapor pressures before moving onto the next time step, the subcooled model 

calculated the pressure as a function of the heat removed from the vapor.  This heat removal was 

determined by balancing the mass and energy into and out of the vapor, liquid, and saturated layer 

regions.  Referencing figure 18, the following equations summarize this process.   

Q̇lift = ṁGHe�hHX,in − hHX,out� − Q̇SL − Q̇HL,liq =
mliqCP,liq

t
∆Tliq                  (3) 

 Q̇SL =
kSLALV

LSL
�Tvap − Tliq�                                                       (4) 

Q̇Vap = Q̇SL −  Q̇HL,vap = hfgṁcondense                                              (5) 

Where “kSL” is the thermal conductivity of the saturated layer, taken to be the average for saturated 

liquid between Tvap and Tliq; “ALV” and “LSL” are the surface area of the liquid-to-vapor interface, 

and thickness of the saturated liquid layer respectively, and both were assumed to be constant; 

“hfg” is the heat of vaporization; and “Q̇SL” is the heat transfer through the saturated layer.  

Equation 3 yields an expression similar to equation 2 for the iterative liquid temperature, only the 

liquid mass is captured within jth loop since it is not used as a convergent parameter; and combining 

equations 4 and 5 produces an expression for the mass flow rate of condensate.  
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Tliqj+1 = Tliqj −
ti�ṁGHe,i�hHX,in,i − hHX,out,j� − Q̇SL,j − Q̇HL,liq�

mliq,j
Cp,liqj

                             (6) 

ṁcondense,j =
kSL,jALV

hfg,jLSL
�Tvap,j − Tliq,j� −

Q̇HL,vap

hfg,j
                                       (7) 

Equations 6 and 7 comprised the prime machinery of the subcooled model code.  Initial 

conditions, along with constant prescribed and/or predetermined values (kSL, ALV, LSL, Q̇HL,vap 

and Q̇HL,liq) established an iterative liquid temperature and condensation rate, and then average 

quantities for ten different variables from j to j+1 were fed back into the analysis within each ith 

time iteration to increase accuracy.  As in the saturated analysis, once the j-iterations ended, the 

calculated i+1 properties were prescribed to the given ith time step, and the loop began again with 

i=i+1.  A step-by-step description of the analysis code would be much too cumbersome to be 

presented here; therefore only key details will be discussed.  However, as with the saturated 

analysis, a flow chart is presented in appendix C. 

Because LSL and ALV were assumed constant, the volume of the saturated layer remained 

constant as well.  However, as the temperature of the vapor and subcooled liquid dropped over 

time the density of the saturated layer increased, therefore the mass of the liquid within it also 

increased.  To keep track of the accumulation of mass with each zone, the analysis compared the 

mass of the saturated layer at j+1 (calculated using the volume and density at j+1) to that at j (i.e. 

ΔmSL).  This delta was then compared to the mass of the condensate determined from equation 7, 

and the excess was assumed to have migrated into the subcooled liquid mass.  The code verified 

that the combined mass of the vapor, saturated layer, and subcooled liquid always equaled the total 

mass calculated at the outset. 
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Surface area of the liquid-to-vapor interface was determined via a combination of 

geometric relations, and relations derived from the CAD model of the GODU-LH2 IRAS tank.  

For the barrel section of the tank the liquid-to-vapor interface area is simply the length of the 

circular segment positioned at the liquid height multiplied by the length of cylinder.  For the 2:1 

elliptical heads the area (ALV,head) was determined by varying the liquid height in the CAD model, 

and using the internal surface area tool, the values were determined and recorded in Excel to create 

a curve fit equation.  Normalizing ALV,head by the cross-sectional area of the inner tank (Axs,Dh, 

based on the hydraulic diameter), and comparing that to the normalized liquid level (h/Dh), where 

“Dh” is the hydraulic diameter and “h” is the liquid level, it was found that ALV,head/Axs,Dh = f(h/Dh) 

was constant with respect to Dh.  This relationship was plotted, and the resulting curve-fit equation 

was combined with the cylindrical relationship to form an estimate for the total liquid-to-vapor 

surface area (ALV) for a horizontal cylindrical tank with 2:1 ASME elliptical heads. 

ALV = 2L��
Dh

2
�
2

− �
Dh

2
− h�

2

+
πDh

2

2
�

h
Dh

− �
h

Dh
�
2

�                                    (8) 

Where “L” is the length of the barrel section of the tank.  At 100% full the GODU-LH2 IRAS tank 

liquid level was at roughly 2.4 m (95 in), and the inner tank diameter was 2.9 m (114 in), which, 

when plugged into equation 8, yields a total liquid-to-vapor interface area of 45.5 m2.  

A critical variable in the subcooled analysis was the thickness of the saturated layer, as it 

dramatically affected the thermal resistance between the subcooled liquid and vapor.  

Unfortunately, no definitive way to calculate LSL presented itself prior to running the analysis; 

however, a method was devised that employed equation 4 during steady state ZBO-PC testing that 
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ultimately yielded realistic results.  It was presumed that during steady state operation the heat 

transfer rate through the saturated layer must be equal to that leaking into the ullage in order to 

maintain constant pressure (i.e. Q̇SL = Q̇HL,vap).  ZBO-PC test data was then used in conjunction 

with equation 4 to back out LSL.  At 100% full the heat leak into the vapor region was estimated to 

be 81 W (see table 3), and from the test data the saturated vapor and average liquid temperatures 

were 20.98 K and 20.38 K respectively.  Thermal conductivity of the saturated layer was estimated 

between these two temperatures (kSL = 0.104 W/m-K), and with ALV known, equation 4 yielded 

LSL = 35 mm (1.4 in).  LSL is considered to be a physical quantity only in the context of the 

subcooled model due the assumption that the entire layer is saturated.  In reality, there is no 

definitive elevation where the saturated fluid ends and subcooled fluid begins, leading to the 

stratified model presented by Ewart and Dergance. 

From LSL and ALV the volume of the saturated layer could be estimated, and once all the 

geometric properties were determined, they were fed into the code as initial conditions, along with 

the values presented in table 4 and the relevant hydrogen properties.  As before, the subcooled 

model was run with 15 minute time steps, from 0 to 100 hours, using both variable and constant 

helium inlet conditions.  Tank pressure, and liquid and vapor temperatures were tracked over time 

to compare to the test data.  These results are presented in the next section. 

Subcooled Model Results 

Figures 19 and 20 capture the results of the subcooled model at the 100% fill level.  Error 

bars are the same is in figures 15 through 17, and the saturated model results are superimposed for 

sake of comparison. 
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Figure 19: Subcooled Model Pressure Trends  

 
Figure 20: Subcooled Model Temperature Trends 

18.0

23.0

28.0

33.0

38.0

43.0

48.0

53.0

58.0

0 10 20 30 40 50 60 70 80 90 100

Pr
es

su
re

, k
Pa

(a
)

Analysis Time, hr

Data
Subcooled Model, Variable GHe
Subcooled Model, Constant GHe
Saturated Model, Variable GHe
Saturated Model, Constant GHe

15.7

15.9

16.1

16.3

16.5

16.7

16.9

17.1

17.3

17.5

17.7

17.9

18.1

18.3

18.5

0 10 20 30 40 50 60 70 80 90 100

Te
m

pe
ra

tu
re

, K

Analysis Time, hr

Data (liquid)
Saturated Model, Variable GHe
Saturated Model, Constant GHe
Subcooled Model (Tliq), Variable GHe
Subcooled Model (Tliq), Constant GHe
Subcooled Model (Tvap), Variable GHe
Subcooled Model (Tvap), Constant GHe



56 
 

Discussion of Subcooled Model Results 

From figure 19 it is obvious that the subcooled model predicted the depressurization trend 

at 100% full much more accurately than the saturated model—save the slight delay of the pressure 

and vapor temperature curves to react at the beginning of the simulation, which was due to the 

sensitivity of the saturated liquid layer thickness on the thermal resistance.  The maximum and 

average absolute error between the model and data for the two helium inlet conditions was 2.5% 

and 1.2% respectively for constant, and 1.4% and 0.5% for variable.  Interestingly, the two GHe 

boundary conditions did not result in the drastically different behavior observed in the saturated 

model over the chosen time slice.  Both curves trended closely, with a maximum ΔP of only 0.81 

kPa; whereas, the maximum ΔP for the saturated model was between 7.26 kPa and 20.3 kPa 

depending on fill level.   Additionally, the prediction did not noticeably diverge from the data as 

time increased like the saturated model did.  However, the constant GHe case did appear to exhibit 

divergent behavior toward the end of the simulation time, whereas the variable case seemed to 

maintain a similar slope to the data curve.  Looking further into this situation it was found that 

over the last quarter of the simulation time the error in the slope of the depressurization curve for 

the variable GHe case decreased from +2.2% to -1.1%, and increased from -8.7% to -19% for the 

constant GHe case.  Also, the difference between data and prediction for variable the GHe case 

was -0.06 kPa on average, with a standard deviation of 0.12.  This result was a marked 

improvement over the saturated model, where the slope of the variable GHe case was greater than 

that of the data by anywhere from 7% to 14% over the last quarter of the simulation, and the 

difference between the data and the prediction was -4.2 kPa on average, with a standard deviation 

of 0.23. 
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Turning to figure 20, both GHe cases of the subcooled model predicted the average liquid 

temperature extremely well.  Average absolute errors were 0.2% and 0.03% for constant and 

variable GHe boundary conditions respectively over the entire 100 hour simulation time, with 

maximums of 0.35% and 0.12% respectively.  Another noticeable feature is that the initial 

temperature condition of the saturated model was the same as that of the vapor, but quickly 

diverged thereafter.  This is in line with the subcooled model assumption that the vapor was 

saturated throughout the analysis, and duplicates the trend seen in figure 17. 

Although the behavior at the 67% fill level did not deviate from the saturated model as 

dramatically as it did at 100% full, the subcooled model was nevertheless run at 67% to determine 

which, if either, yielded a more accurate prediction.  These results are not presented graphically, 

however, the depressurization rate was predicted slightly better than what is shown in figure 16.  

Although still lower overall, the slope of the curves showed closer agreement over the entire 150 

hour time slice, and did not seem to exhibit any divergent behavior.  Complicating matters 

however, was the much smaller saturated layer thickness used in the analysis.  Calculated per the 

same method as in the 100% analysis presented previously (i.e. using steady state ZBO-PC data), 

the 67% thickness came out to be only 8 mm.  Since, as LSL approaches zero the subcooled model 

essentially makes the same prediction as the saturated model, this smaller thickness, along with 

the fact that the saturated model almost perfectly predicted the behavior at 46% full, seems to 

confirm that the IRAS tank trended toward full saturation conditions at lower fill levels regardless 

of how much heat exchanger area was submerged versus exposed to the vapor space.  It is unknown 

at this time if factors such as tank geometry and stored fluid species bear the primary responsibility 
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for this result, and whether it is possible to completely saturate the tank regardless of fill level 

using only IRAS design features such as heat exchanger design and refrigerant flow path. 

Steady State Analysis 

Exploring the steady state operation of an IRAS system (i.e. maintaining a constant tank 

pressure) is, in effect, an effort in initial refrigerator sizing also.  In order to achieve a constant 

pressure the environmental heat leak must be balanced with the refrigeration lift at a given fluid 

state; therefore, the thermal performance of a particular vessel must be known or estimated up 

front, and then the minimum acceptable refrigeration capacity can be established.  In some cases 

it may be possible to directly test the thermal performance of a potential IRAS tank prior to 

refrigerator determination via boiloff calorimetry.  However, if the system is in the design phases, 

or testing is simply not feasible, estimation of the steady state heat leak must be conducted 

analytically.  Such was the case during GODU-LH2 planning phases—although, calorimetry was 

performed during the testing program (see table 3) to establish the actual performance, and validate 

the analysis.  Many different types of thermo-fluid analysis software exist, and can be used to 

create detailed models of vessels to determine the thermal performance.  However, in many cases 

it is desirable to obtain a simple, first order estimate before committing resources to a detailed 

thermal analysis.  This approach is especially helpful in the planning phases, when developing 

high level requirements and obtaining cost estimates is a priority. 

 



59 
 

1st Order Analytical Estimate of IRAS Tank Heat Leak  

For a vacuum-jacketed tank such as the one used for GODU-LH2 there are four primary 

paths of heat ingress: (1) through the broad area thermal insulation system, (2) through the 

structural supports between the inner and outer vessels, (3) through the man-way penetration, and 

(4) through the various other fluid and instrumentation penetrations such as pipes and tubes.   

Details pertaining to 1 through 3 were fairly well known up-front for the GODU-LH2 tank, so an 

initial heat leak estimate was determined neglecting fluid penetrations. 

Numerous broad area thermal insulation systems are employed in vacuum-jacketed 

cryogenic storage vessels depending on the application and requirements.  In the case of the 

GODU-LH2 tank that system was referred to as multi-layer insulation (MLI)—multiple layers of 

reflective material, usually aluminum foil or sheets, interspersed with low thermal conductivity 

spacer sheets to cut down on solid condition between adjacent reflectors, and wrapped around the 

cold inner tank surface inside the vacuum annulus.  When properly designed and executed, this 

scheme can provide the highest thermal performance known (i.e. lowest heat leak), and has been 

formally standardized in the American Society for Testing and Materials (ASTM) C740/C740M 

standard [23].  Performance data for other insulation systems, such as bulk fill perlite and glass 

bubbles, is also available through ASTM, summarized in standard C1774 [24].  From data curves 

presented in C740 the heat flux for 80 layers of foil and paper (the MLI system installed in the 

GODU-LH2 tank) was estimated to be 0.5 W/m2 at 0.1 millitorr vacuum pressure.  Because these 

data were gathered using boiloff calorimetry, the heat flux number captured every available mode 

of heat transfer, therefore it could be used to directly estimate the total heat transfer through the 

MLI assuming the insulated surface area was known.  However, because C740 data was obtained 
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at boundary temperatures of 77 K and 293 K, and the IRAS test tank would be working at LH2 

temperatures (~20 K), the direct use of the heat flux for this application was a simplification.  In 

reality, the thermal performance would change somewhat with the decrease in cold boundary 

temperature, but for the purpose of preliminary heat leak estimation this simplification was deemed 

justified.  Using a detailed CAD model of the inner tank, the surface area was estimated to be 203 

m2.  Multiplying this by the heat flux yielded an estimate for the heat leak through the broad area 

MLI (Q̇MLI,broad) of 101.5 W. 

The inner tank was supported by the outer shell inside the annular space on four rectangular 

pads.  In an attempt to cut down on the solid condition heat leak between the vessels each pad was 

thermally isolated from one another using 17.8 cm x 7.6 cm x 5.1 cm thick G-10 fiberglass epoxy 

blocks—a standard structural material used in cryogenics.  Average thermal conductivity of G-10 

in the normal direction, between 20 K and 300 K was obtained from the NIST cryogenic material 

property database [25], and found to be 0.392 W/m-K.  With the geometry and thermal 

conductivity known, it was possible to estimate the heat transfer through the support pads via the 

Fourier equation. 

Q̇pads = 4 ∙
λG10AG10

tG10
∆T =  

4 �0.392 W
m − K� (0.0136 m2)

0.0508 m
(300 K − 20 K) = 117.5 W        (9) 

Although both are somewhat idealized, comparing the heat leak estimates for the MLI 

versus the support pads illustrates the importance of internal support design in vacuum-jacketed 

cryogenic vessels.  Even though the combined heat transfer area of the four pads is almost 4000 
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times less than that of the MLI, the calculated heat leak is roughly 16% more than that due to the 

MLI thermal insulation system. 

Because the man-way requires a large, straight-through penetration, this port constitutes 

a large percentage of the heat leak; especially so as the vessel size decreases.  In the case of the 

GODU-LH2 IRAS tank the man-way penetration was 58.4 cm in diameter, and roughly 86 cm 

long.  It was welded to the inner tank, and connected to the outer via a pair of flexible bellows to 

allow for thermal contraction.  The annular space around the inner pipe communicated with the 

tank vacuum-jacket, and an MLI blanket (10 layers of foil and paper instead of 80) was employed 

to cut down environmental heat leak into the port.  Figure 21 shows a cut-away of the penetration 

with relevant information for the heat leak calculation. 

 
Figure 21: Setup for Man-Way Port Analysis 
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MLI blanket “tMLI” was 4.36 mm.  The penetration was constructed of 304L stainless steel, and 

consulting the NIST cryogenic materials database it was found that the average bulk thermal 

conductivity of 304L (λ304) between 300 K and 20 K is 8.75 W/m-K.  The fitment of the man-way 

plug (not shown in figure 21) into the port allowed for a minimal gap to cut down on gas 

convection, and radiation from the warm top flange—hence, both modes were neglected for this 

1st order estimate, as it was assumed they would be overshadowed by the solid conduction heat 

transfer through the stainless steel.   From the geometry and thermal conductivity it was possible 

to estimate the axial heat leak through the penetration due to conduction. 

Axs,port = π ���
D
2
� + tshell�

2

− �
D
2
�
2

� = 238 cm2                                  (10) 

Q̇axial,port =
λ304Axs,port

X
∆T =

�8.75 W
m − K� (0.0238 m2)

0.762 m
(300 K − 20 K) = 76.5 W         (11) 

A similar methodology was used to determine the MLI heat leak through the man-way 

penetration, only the effective thermal conductivity (ke) of the MLI was used as opposed to the 

bulk thermal conductivity.  Unfortunately, ASTM C740 data did not include a curve for 10 layers 

of foil and paper, only 40, 60 and 80; therefore, it was decided instead, to use the Kaganer-k line 

benchmark [26] to estimate ke.  This benchmark encompasses actual boiloff calorimetry testing of 

many different MLI systems, similar to the heat flux estimated from C740 above, hence can be 

used to determine the heat leak directly using the Fourier equation.  At 0.1 millitorr the Kaganer-

k line estimates ke to be 0.05 mW/m-K for 293 K and 77 K boundary temperatures—as before, the 

use of these metrics for a cold boundary other than 77 K introduces some error into the overall 
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heat leak estimates, but is thought to be minor, and considered a justifiable concession made for 

sake of simplicity in a 1st order analysis such as this.  With the geometry and ke in-hand, it was 

possible to calculate the heat leak through the MLI using a cold boundary of 160 K (the average 

between 300 K and 20 K), and subsequently, the total through the port. 

AMLI = 2πX ��
D
2
� + tshell� = 1.46 m2                                          (12) 

Q̇MLI =
keAMLI

tMLI
∆T =

�0.05 x 10−3  W
m − K� (1.46 m2)

4.36 x 10−3 m
(300 K − 160 K) = 2.34 W         (13) 

Q̇port = Q̇axial,port + Q̇MLI = 78.8 W                                          (14) 

An additional heat leak also existed as a result of the man-way plug itself.  This plug was 

essentially a 57.8 cm diameter by 6.35 mm thick, stainless steel (304L) cylindrical vacuum vessel 

filled with glass bubble insulation.  Consulting ASTM C1774, the effective thermal conductivity 

of bulk fill glass bubbles at 0.1 millitorr was found to be 0.7 mW/m-K.  Because ke of the glass 

bubbles was roughly four orders of magnitude lower than the thermal conductivity of the stainless 

steel, the radiation heat transfer through the plug was neglected.  As such, the heat leak through 

the plug could be estimated in a similar fashion to the penetration; followed by the total heat leak 

through the entire man-way assembly. 

Q̇plug =
λ304Axs,plug

X
∆T =

�8.75 W
m − K� (0.0114 m2)

0.762 m
(300 K − 20 K) = 36.7 W        (15) 

Q̇manway = Q̇port + Q̇plug = 115.5 W                                          (16) 
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Summing up the heat leak through each of the three paths examined yields a 1st order 

estimate for the entire tank heat leak during steady state.   

Q̇tank = Q̇MLI,broad + Q̇pads + Q̇manway = 334.5 W                              (17) 

Comparing this total to the boiloff calorimetry testing results presented in table 3 reveals 

that the analytical methodology used here over-predicted the heat leak, but not by a substantial 

amount.  The analytical estimate was around 6% higher than the actual at the 100% fill level; 

however, this number might actually be higher or lower due to the simplifying assumptions.  

Inclusion of the fluid penetrations would drive the error higher due to the additional heat leak, but 

incorporating thermal contact resistance between the stainless steel support pads and G-10 blocks 

would have assuredly drove it back down.  Additionally, using 20 K as the cold boundary 

temperature for the man-way calculations was also overly conservative.  In reality, the very top of 

the tank, or bottom of the man-way, is always some distance away from the actual liquid, therefore 

is markedly warmer—especially during steady state operation where the ullage is stratified from 

top to bottom.  Raising the cold boundary temperature decreases the ΔT, but increases λ304, and 

not in a commensurate fashion due to the non-linear temperature dependency for λ304, resulting in 

an increase or decrease in error.  A quick examination into this revealed that, for the particular 

geometry and methodology presented here, Q̇manway was maximum at a cold boundary 

temperature of roughly 57 K.   

Knowledge of the intrinsic thermal performance of a future IRAS tank, along with the 

concept of operation for the system (i.e. what lift-to-heat leak ratio is required to achieve the design 

intent), effectively establishes a baseline for the size, scope and general cost of the necessary 

refrigeration system.  As mentioned in chapter 3, the GODU-LH2 refrigerator was chosen to have 
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a lift-to-heat leak ratio ranging from 1.5 to 2.7 based upon the total estimated heat leak, stored 

commodity, heat exchanger geometry, and other factors.  However, the basis of any IRAS system 

is the relationship between the intrinsic tank performance and the refrigerator lift capacity. 

Steady State Data Envelope 

In order to explore the steady state performance of GODU-LH2 refrigerator, time slices 

were examined during ZBO-PC testing at each fill level (see figures 9-11).  ZBO-PC testing series 

were chosen because the tank pressure and temperatures were almost constant for a significant 

period of time at a given pressure set point.  This condition meant that the refrigerator lift and tank 

heat leak were balanced, and therefore a comparison could be made between the two.  Time slices 

(total duration), pressure set points, average hydrogen temperature (taken over all diodes in the 

tank), and tank heat leak for the 46%, 67% and 100% fill levels are presented in table 5. 

Table 5: Data Used for Steady State Refrigerator Performance Analysis 

hr kPa(g) K W
46% 20.0 22.8 21.4 291†

67% 25.0 15.9 20.9 296

100% 20.0 22.8 20.4 315

Time Slice
(total duration)Fill 

Level

Pressure
Set Point

Average Tank 
Temperature

Tank Heat 
Leak

 
† Determined from the curve-fit equation presented in figure 12 

Steady State Refrigerator Performance Analysis 

Figure 22 shows the model setup used to determine the steady state refrigerator 

performance.  Temperatures, pressures, engine RPM, and heater power were quantities gathered 
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by the data acquisition system; the tank and vacuum-jacketed line heat leak were presented 

earlier—governed by the curve-fit equations presented in figure 12, and assumed to be a constant 

36 W respectively—and the heat exchanger lift and expander work extraction are the subject of 

the current examination. 

 
Figure 22: Steady State Refrigerator Performance Model Setup 

Due to the laws of conservation, under perfect steady state conditions the total tank heat 

leak should match the heat exchanger lift exactly since the tank is a closed system.  From this it is 

possible to set up an energy balance between the IRAS tank and refrigerator, and given the helium 

supply and return properties, examine the relationship between the two over time.  This is 

summarized in equation 18.  And by incorporating the additional heater power, the total work 

extracted by the expander was calculated per equation 19. 
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Q̇HL,total = Q̇Lift = ṁGHe�hGHe,return − hGHe,supply� − Q̇VJ,supply − Q̇VJ,return             (18) 

Ẇout = Q̇Lift + Q̇VJ,supply + Q̇VJ,return                                              (19) 

The helium mass flow rate is a function of numerous factors, and is unique to each 

refrigeration system.  In the case of the GODU-LH2 unit, it was calculated with respect to what is 

best described as the “virtual piston displacement”—a specific function derived from manufacturer 

supplied calibration data to calculate the displacement based on RPM, but not the actual physical 

distance the piston travels.  In general, when running at full capacity (i.e. with LN2 precooling) the 

mass flow rate followed the trends presented in appendix A when the LH2 temperature dropped 

below the NBP, and was around 22 g/s on average; and without precooling it was around 13 g/s.  

Using the virtual displacement, the virtual piston volume was calculated, followed by the mass of 

helium that entered the expansion chamber each rotation based on the density at TEXP and PEXP.   

X�piston = f(RPM)   →   V�piston = π �
Dpiston

2
�
2

X�piston                            (20) 

ρGHe = f(TEXP, PEXP)    →    mGHe = ρGHeV�piston    →    ṁGHe =
2mGHeRPM

60
 (2 pistons)     (21) 

Figures 23 through 25 show the results of applying equations 18, 20 and 21 over each of 

the ZBO-PC analysis regions, and compares the calculated exchanger lift to the tank heat leak.  

Tank temperature and pressure, as well as the helium supply and return temperatures are also 

presented for a visual verification of steady state conditions. Due to the fluctuations in both the 

supply temperature and heat exchanger lift, which were caused by the heater hysteresis, linear 

curve-fits are included to better understand the overall behavior.  
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Figure 23: Steady State Results at the 46% Fill Level  

 
Figure 24: Steady State Results at the 67% Fill Level 
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Figure 25: Steady State Results at the 100% Fill Level 

Discussion of Steady State Results 
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W/hr at 67% full to -0.663 W/hr at 100%—and were consistently lower than the constant heat leak 

value obtained via boiloff calorimetry testing at each fill level.   

The differing average lift slopes seem it suggest that the tank was never at a true steady 

state condition during the ZBO-PC examination period, even though the pressure and temperature 

appeared stable.  It is expected that, given long enough time scales and ideal conditions, the slopes 

would trend toward zero.  However, because of the changes in environmental heat leak—both 

expected, as in the case of day/night cycles, or unexpected as in the case of weather—it is possible 

that an outdoor system will always remain in a state of dynamic equilibrium rather than steady 

state.  Testing at one pressure set point for a long duration, or with the system contained within a 

climate-controlled building could perhaps determine if a genuine steady state is achievable. 

An over-predicted steady state heat leak, or an under-estimated refrigerator lift are the only 

two explanations for the consistently lower lift-to-heat leak relationship witnessed.  After a 

thorough examination, it was realized that either one, or both could be true.  Even though the heat 

leak was directly determined via calorimetry, these tests were conducted very near normal boiling 

point.  Whereas, the ZBO-PC data was taken when the tank was being maintained at a slight 

positive gauge pressure.  Saturated at a higher pressure, the LH2 temperature would also be slightly 

higher than at NBP, which would decrease the overall ΔT across the tank compared to the boiloff 

tests, and possibly the heat leak as well.  Another source of error in the heat leak could be the 

constant 36 W assumed for each of the vacuum-jacketed helium lines.  As mentioned previously, 

this load was calculated using temperature data across the supply line early on in testing, and it is 

possible that it decreased slightly over time due to the cooldown process and/or increased 

insulation performance.  Also, the assumption that both the supply and return lines had equal heat 
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leaks may have affected the result; in reality the return line temperature was always higher than 

the supply, which affected the heat transfer, and even though they were identical designs, no two 

vacuum-jacketed lines perform exactly the same. 

Possible sources of error that could have contributed to an low estimate for the refrigeration 

lift include uncertainties in the refrigerator temperature sensor data (± 0.1 K), helium enthalpies 

from RefProp (1% to 5% for Version 8), and virtual piston displacement (a function of a curve-fit 

equation that used calibration data that ultimately was used to determine GHe mass flow rate per 

equation 21).  It is believed that the RefProp error bears the most blame, since it was found that 

adjusting the enthalpies by only 2% eliminated the under-prediction.   
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CHAPTER FIVE: CONCLUSION 

Design, build-up and testing of a large scale Integrated Refrigeration and Storage (IRAS) 

system known as the Ground Operations Demonstration Unit for Liquid Hydrogen (GODU-LH2) 

has successfully demonstrated that the marriage of commercially available cryogenic refrigeration 

systems with large storage tanks is both technically and practically possible.  Test data were 

presented that demonstrated the next generation capabilities IRAS affords, such as zero boiloff, 

in-situ liquefaction, liquid densification, and even slush production.  Aside from the more obvious 

economic benefits, these capabilities may also improve operational and safety aspects related to 

cryogenic storage facilities. The venting and filling of vessels are, in many circumstances, 

considered hazardous operations, requiring specialty expertise and training.  Therefore, reducing, 

or eliminating such processes could translate to increased operational efficiency, schedule 

flexibility, cost savings, and overall site safety.  Possibly the most crucial point however, is that 

the technology provides a heretofore impossible level of control over the state of the stored fluid.  

Any end-use process, as well as the interconnecting transfer system, is either directly or indirectly 

designed around the thermodynamic state of the stored commodity.  So, the ability of IRAS to 

achieve a desired state condition anywhere along the saturation curve effectively opens up a vast 

set of possibilities never before available to designers.  It is therefore foreseeable, given that IRAS 

is widely accepted and implemented, that designs of future architectures for managing large 

quantities of cryogenic liquids, such as those required for space launch vehicles and ocean-going 

tanker ships, could be quite different than the traditional versions that have been in-use, and 

remained relatively unchanged, for multiple decades.  
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It is in the spirit of ushering in this future that much effort was spent on developing models 

that can predict the behavior of IRAS systems, for both steady state and transient operation, and 

anchoring them with actual GODU-LH2 test data.  Steady state analysis focused on a first order 

estimation of the IRAS tank heat leak, and the comparison to the performance determined via 

boiloff calorimetry testing.  This estimation proved to be conservative, overestimating the actual 

heat leak by around 6%, but was idealized in many ways also.  An examination of refrigerator 

performance during steady state operation was also presented.  Actual refrigerator data was used 

during zero boiloff pressure control testing—when the tank pressure and hydrogen temperature 

were virtually constant—to calculate the IRAS heat exchanger lift, and then a comparison was 

made to the tank heat leak obtained via testing.  In each case the calculated lift was slightly lower 

than the heat leak and exhibited varying trends over time.  However, this situation was not 

physically possible. Because the IRAS tank is a closed system, a balance between the heat leak 

and lift was the only means by which the tank pressure could stay constant.  Numerous factors that 

may have contributed to this result are proposed, and it is surmised that more than one, or all, could 

have played a part. 

At the outset it was desired to construct a generalized, “universal” model to predict the 

transient behavior of any IRAS system.  Unfortunately, this effort was met with some difficulty 

when the initial scheme—rooted in the assumption that the hydrogen was saturated throughout the 

analysis period (i.e. the saturated model)—predicted the behavior at the 46% fill level extremely 

well, with average errors for the pressure and temperature trends of 1.7% and 0.8% respectively, 

but failed at the higher levels.  At 100% full, when the IRAS heat exchanger was almost completely 

submerged, the saturated assumption was found to be invalid, which resulted in the model 
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dramatically over-predicting the de-pressurization rate.  This realization led to the creation of a 

second transient scheme based upon the idea that there was a saturated liquid layer that separated 

a subcooled liquid region from a saturated vapor region (i.e. the subcooled model).  This layer 

would act as a thermal resistance, retarding the heat transfer between the subcooled liquid (where 

cooling was taking place) and the vapor, and thus slow down the depressurization rate.  The 

subcooled model successfully predicted the pressure and temperature trends at 100% as closely as 

the saturated model did at 46%, but did little to explain why a separate set of assumptions was 

necessary as the liquid level increased.   

An obvious takeaway was that constructing a universal model of even a single, well 

understood IRAS tank is thoroughly challenging, and that extending such an effort to a encompass 

a completely generalized form that can be used to guide future, high fidelity designs will require 

additional work.  Nevertheless, it is felt as though the work presented here achieved its primary 

goal by beginning to lay a foundation that can lead to a practical engineering understanding of 

large-scale IRAS systems, and the application thereof. 
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CHAPTER SIX: FUTURE WORK 

Much progress was made by the GODU-LH2 campaign by proving that next generation 

IRAS systems and operations such as zero boiloff and densification achievable on a large scale.  

However, much more work is necessary—both experimentally and analytically—in order to 

develop a more thorough engineering understanding of the concept.  Most importantly, what effect 

the IRAS heat exchanger geometry and position has on the system behavior needs to be examined.  

This task is also coupled to the tank geometry and size, as well as the species of stored commodity, 

which complicates matters somewhat due to the sheer number of potential variations.  

Development of a detailed computational fluid dynamics (CFD) model of the stored fluid in an 

IRAS tank will go far to efficiently cycle through different heat exchanger configurations, and 

could be instrumental in establishing standardized rules, or at least general rules of practice, for 

designing IRAS heat exchangers.  Experimental testing of these configurations on different tank 

geometries will also be necessary in order to substantiate the CFD results—however, it is believed 

that laboratory-scale type tests, much smaller and less cost prohibitive than GODU-LH2, will be 

sufficient to tackle this challenge, and could provide much higher fidelity data.  Exploring the 

effect and potential benefits of refrigerant flow path reversal on the system is also of interest.  The 

GODU-LH2 IRAS tank was locked into a single flow path configuration, but it is believed that the 

ability to reverse the flow to the heat exchanger—supply to the top manifold rather than the bottom 

in the case of GODU-LH2—could produce some dramatic mixing effects within the stored fluid, 

leading to faster depressurization, and possibly better system response times.  In addition, cycling 

the flow while densifying may accelerate the overall process, and could provide enhanced control 

of slush production at the triple point.   
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APPENDIX A:  
CURVE-FITS FOR HELIUM INPUT DATA  
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Figure 26: GHe Inputs for Transient Analysis at 46% Fill Level 

 
Figure 27: GHe Inputs for Transient Analysis at 67% Fill Level 
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Figure 28: GHe Inputs for Transient Analysis at 100% Fill Level   
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APPENDIX B:  
SATURATED ANALYSIS FLOW CHART  
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APPENDIX C:  
SUBCOOLED ANALYSIS FLOW CHART  

  



83 
 

 



84 
 

 



85 
 

 

  



86 
 

APPENDIX D:  
GODU-LH2 IRAS HEAT EXCHANGER AREA RELATIONS  
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Figure 29: IRAS Heat Exchanger Area Ratio vs. Inner Tank Height 

 
Figure 30: IRAS Heat Exchanger Area Ratio vs. Liquid Height   
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